Page 3 of 3
Organic & Biomolecular Chemistry
DOI: 10.1039/C4OB02146K
a
(
entry 2). 4-Alkylsubstituted benzaldehydes delivered the
products with fairly good level of enantioselectivities (entries 3-
). Different halo-substitutions at the 4-position of benzaldehyde
Department of Chemistry, Indian Institute of Technology Guwahati,
Guwahati 781039, India. Fax: 91-361-2582349; Tel: 91-361-2583304; E-
mail: span@iitg.ernet.in
4
†
Electronic Supplementary Information (ESI) available: [Experimental
13
were also tolerated and the products were obtained in similar
enantioselectivities (entries 5-7). 4-Hydroxybenzaldehyde can
also be employed and product 3h was observed in satisfactory
yield with 92:8 er (entry 8). Encouraged by this result and that of
entry 2, we screened different 4-alkoxybenzaldydes for our
reaction and acceptable yields with high enantioselectivities
(>90:10 er) were attained in all cases (entries 9-13). Good
enantioselectivity was also achieved with 4-acetoxybezaldehyde
1
5
6
6
7
5
0
5
0
procedures and H, C NMR and HPLC data of all products]. See
DOI: 10.1039/b000000x/
1
5
a) B. E. Evans, K. E. Rittle, M. G. Bock, R. M. Dipardo, R. M.
Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S.
Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B. Chen, P. J.
Kling, K. A. Kunkel, J. P. Springer, J. Hirshfield, J. Med. Chem.,
1988, 31, 2235; b) J. Nilsson, E. Ø. Nielsen, T. Liljefors, M. Nielsen,
O. Sterner, Bioorg. Med. Chem. Lett., 2008, 18, 5713; c) M. E.
Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol.,
2010, 14, 347; d) A. Ahmed, M. Daneshtala, J. Pharmaceutical Sci.,
2012, 15, 52.
1
1
2
2
0
5
0
5
(entry 14). Then different 3-substituted benzaldehydes were
screened (entries 15-17). Though, m-anisaldehyde afforded
product 3o in good enantioselectivity (entry 15), diminished
yields and enantioselectivities were observed for products 3p and
2
a) Y. Xia, Z. –Y. Yang, P. Xia, K. F. Bastow, Y. Tachibana, S. –C.
Kuo, E. Hamel, T. Hackle, K. –H. Lee, J. Med. Chem., 1998, 41,
3
q (entries 16-17). Pleasingly, our reaction condition is suitable
1
155.; b) S. –X. Zhang, J. Feng, S. –C. Kuo, A. Brossi, E. Hamel, A.
for the employment of different di and tri-substituted
benzaldehydes (entries 18-20) and vanillin proved to be the best
aldehyde with 96:4 er (entry 18). Different heteroaromatic
aldehydes can also be engaged in our reaction albeit poor yields
were observed (entries 21-22). Additionally, different substituted
Tropsha, K. –H. Lee, J. Med. Chem., 2000, 43, 167; c) A. E. Nibbs,
K. A. Scheidt, Eur. J.Org. Chem., 2012, 449; d) A. Patti, S. Pedotti,
T. Grassi, A. Ido lo, M. Guido, A. De Donno, J. Organomet. Chem.,
2
012, 716, 216.
3
4
S. Chandrasekhar, S. N. C. V. L. Pushpavalli, S. Chatla, D.
Mukhopadyay, B. Ganganna, K. Vijeender, P. Srihari, C. R. Reddy,
M. J. Ramaiah, U. Bhadra, Bioorg. Med. Chem. Lett., 2012, 22, 645.
a) R. Shintani, T. Yamagami, T. Kimura, T. Hayashi, Org. Lett.
2
-amino acetophenones were also employed for the first time in
this reaction (entries 23-25). 5-Chloro-2-aminoacetophenone (1b)
provided product 3w in moderate yield with 92:8 er but a higher
yield was attained for product 3x in similar enantioselectivity.
75
2005, 7, 5317; b) X. Zhang, J. Chen, F. Han, L. Cun, J. Liao, Eur. J.
Org. Chem., 2011, 1443.
5
6
B. –L. Lei, C. –H. Ding, X. –F. Yang, X. –L. Wan, X. –L. Hou, J.
Am. Chem. Soc., 2009, 131, 18250.
a) Z. Feng, Q. L. Xu, L. X. Dai, S. L. You, Heterocycles 2010, 80,
A proposed transition state model has been shown in Figure 2 and
it dictates that the primary amino group of the catalyst generates
an enamine intermediate. Also only Si face of the newly
generated imine double bond is exposed for enamine addition.
We also assume that the carboxylic acid group of catalyst
simultaneously activates the imine from the Re face for the
addition. The absolute configuration of the product could be
envisaged as “R” by this model and it was also confirmed by the
comparison of the optical rotation with literature value (see
supporting information for details).
8
8
9
9
0
5
0
5
7
65; b) X. Liu, Y. Lu, Org. Lett., 2010, 12, 5592; c) X. Xiao, X. Liu,
S. Dong, Y. Cai, L. Lin, X. Feng, Chem. Eur., J. 2012, 18, 15922.
a) M. Rueping, S. A. Moreth, M. Z. Bolte, Z. Naturforsch B 2012,
67b, 1021; b) S. Cheng, L. Zhao, S. Yu, Adv. Synth. Catal., 2014,
356, 982.
a) S. Chandrasekhar, K. Vijeender, C. Sridhar, Tetrahedron Lett.,
2007, 48, 4935; b) K. Kanagaraj, K. Pitchumani, J. Org Chem. 2013,
78, 744; c) H. Zheng, Q. Liu, S. Wen, H. Yang, Y. Luo,
Tetrahedron: Asymmetry 2013, 24, 875. For a recent report on copper
(II) catalyzed asymmetric [1,6]-aza-electrocyclization of 1,3
dicarbonyl compounds having related structures, see: P. C. Knipe, M.
D. Smith, Org. Biomol. Chem., 2014, 12, 5094.
For reviews on organocatalytic asymmetric Mannich reactions, see:
a) A. Córdova, Acc. Chem. Res. 2004, 37, 102; b) A.Ting, S. E.
Schaus, Eur. J. Org. Chem., 2007, 5797; c) M. M. B. Marques,
Angew. Chem. Int. Ed., 2006, 45, 348; d) J. M. M. Verkade, L. J. C.
van Hemert, P. J. L. M. Quaedflieg, F. P. J. T. Rutjes, Chem. Soc.
Rev., 2008, 37, 29; e) M. Benohoud, Y. Hayashi, In Asymmetric
Organocatalysis 1: Lewis base and acid catalysis, B. List, Ed.
Thieme Verlag: Stuttgart, 2012, pp 73-134; f) X. –H. Cai, B. Xie,
ARKIVOC 2013, 264.
For a review on primary amino acids as privileged catalysts in
enantioselective organocatalysis, see: L. –W. Xu, Y. Lu, Org.
Biomol. Chem., 2008, 6, 2047.
For selected recent reports on O-protected-L-threonine catalyzed
asymmetric transformations, see: a) S. S. V. Ramasastry, H. Zhang,
F. Tanaka, C. F. Barbas III, J. Am. Chem. Soc., 2007, 129, 288; b) S.
S. V. Ramasastry, K. Albertshofer, N. Utsumi, F.Tanaka, C. F.
Barbas III, Angew. Chem. Int. Ed., 2007, 46, 5572; c) N. Utsumi, M.
Imai, F.Tanaka, S. S. V. Ramasastry, C. F. Barbas III, Org. Lett.,
30
7
8
35
t
O Bu
O
HN
O
9
O
H
N
R
N
H
Ph
Ph
3a
Figure 2 Proposed transition state
1
00
Conclusions
1
1
0
1
In summary, we have developed primary α-amino acid
catalyzed asymmetric intramolecular Mannich reaction between
1
05
40
2
-aminoacetophenones and aryl aldehydes. This report shows that
primary α-amino acids are better catalysts than secondary α-
amino acid such as proline for this particular reaction. Future
applications of primary amino acids in related reactions are in 110
progress in our laboratory.
45
2
007, 9, 3445; d) H. Zhang, S. S. V. Ramasastry, F.Tanaka, C. F.
Barbas III, Adv. Synth. Catal., 2008, 350, 791; e) X. Wu, Z. Jiang, H.
M. Shen, Y. Lu, Adv. Synth. Catal., 2007, 349, 812; f) L. Cheng, X.
Acknowledgements
–
115
Han, H. Huang, M. W. Wong, Y. Lu, Chem. Commun., 2007, 4143;
g) T. C. Nugent, M. Shoaib, A. Shoaib, Org. Biomol. Chem., 2011, 9,
52; h) T. C. Nugent, A. Sadiq, A. Bibi, T. Heine, L. L. Zeonjuk, N.
Vankova, B. S. Bassil, Chem. Eur. J., 2012, 18, 4088.
This work was supported by DST-MPI partner programme. We
thank CIF, Indian Institute of Technology Guwahati for the
instrumental facility.
50
Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3