Ring-Opening Reactions of Epoxides
211
4. (a) Posner, G. H.; Rogers, D. Z. Organic reactions at alumina surfaces: mild and
selective opening of epoxides by alcohols, thiols, benzeneselenol, amines and
acetic acid. J. Am. Chem. Soc. 1977, 99, 8208–8214; (b) Otera, J.; Niibo, Y.;
Tatsumi, N.; Nozaki, H. Organotin phosphate condensates as a catalyst of
selective ring-opening of oxiranes by alcohols. J. Org. Chem. 1988, 53, 275–278.
5. (a) Choudary, B. M.; Sudha, Y. Fe3þ Montmorillonite: An efficient heterogeneous
catalyst for highly regioselective alcoholysis of epoxides. Synth. Commun. 1996,
26, 2989–2992; (b) Yoo, S. K.; Lee, J. Y.; Kim, C.; Kim, S. J.; Kim, Y.
Synthesis structure and heterogeneous catalytic activity of a coordination
polymer containing tetranuclear Cu(II)-btp units connected by nitrates. J. Chem.
Soc., Dalton Trans. 2003, 1454–1456; (c) Barreca, D.; Copley, M. P.;
Graham, A. E.; Holmes, J. D.; Morris, M. A.; Seraglia, R.; Spalding, T. R.;
Tondello, E. Methanolysis of styrene oxide catalyzed by a highly efficient
zirconium doped mesoporous silica. Appl. Cat. A: Gen. 2006, 304, 14–20;
(d) Robinson, M. W. C.; Buckle, R.; Mabbett, I.; Grant, G. M.; Graham, A. E.
Mesoporous aluminosilicate promoted alcoholysis of epoxides. Tetrahedron
Lett. 2007, 48, 4723–4725.
´
´
6. Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M. Copper(II) tetra-
fluoroborate catalyzed ring-opening reaction of epoxides with alcohols at room
temperature. Org. Lett. 2002, 4, 2817–2819.
7. Reviews on microwave chemistry include (a) Kappe, C. O. Controlled microwave
heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284;
(b) Hayes, B. L. Recent advances in microwave-assisted synthesis. Aldrichim.
Acta. 2004, 37, 66–77; (c) Kuhnert, N. Microwave-assisted reactions in organic
synthesis—Are there any nonthermal microwave effects? Angew. Chem. Int. Ed.
¨
2002, 41, 1863–1866; (d) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J.
Microwave assisted organic synthesis—a review. Tetrahedron 2001, 57,
9225–9283; (e) Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.;
´
Jacquault, P.; Mathe, D. New solvent free organic synthesis using focused micro-
waves. Synthesis 1998, 1213–1234; (f) Gabriel, C.; Gabriel, S.; Grant, E. H.;
Halstead, B. S. J.; Mingos, D. M. P. Dielectric parameters relevant to
microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–223;
(g) Galema, S. A. Microwave chemistry. Chem. Soc. Rev. 1997, 26, 233–238.
8. (a) Hayes, B. L. Microwave Synthesis, Chemistry at the Speed of Light; CEM Pub-
lishing: Matthews, 2002; (b) Adam, D. Microwave chemistry: Out of the kitchen.
Nature 2003, 421, 571–572; (c) Cravotto, G.; Cintas, P. The combined use of
microwaves and ultrasound. Chem.-Eur. J. 2007, 13, 1903–1909;
(e) Strauss, C. R.; Varma, R. S. Microwaves in green and sustainable chemistry.
Top. Curr. Chem. 2006, 266, 199–231.
´
´
9. Garcıa-Vidal, J. A.; Duran-Valle, C. J.; Ferrera-Escudero, S. Green chemistry:
Efficient epoxides ring-opening with 1-butanol under microwave irradiation.
Appl. Surf. Sci. 2006, 252, 6064–6066.
10. For the copper(II) tetrafluroborate-mediated rearrangement of epoxides, see
Robinson, M. W. C.; Pillinger, K. S.; Graham, A. E. Highly efficient Meinwald
rearrangement of epoxides catalyzed by copper tetrafluoroborate. Tetrahedron
Lett. 2006, 47, 5919–5921.
11. Eisch, J. J.; Liu, Z.-R.; Ma, X.; Zheng, G.-X. Organomettalic compounds of group
III, 50: high regioselectivity in the alternative halogenative cleavages of terminal
epoxides with Lewis acid metal halides. J. Org. Chem. 1992, 57, 5140–5144.