Nagamine et al.
companied by a lower ee.1c,6 The absolute configurations of the
products were determined to be S when L-amino acids such as
L-Pro or L-Phe were used to mediate the reaction. Quite recently,
Davies disclosed that similar aldol reactions of 1 involving cis-
pentacin, a cyclic â-amino acid, exhibited enantioselectivity
opposite to those promoted by L-amino acids and afforded (R)-3
in high ee.7 This amino acid catalyzed asymmetric transforma-
tion has been widely recognized to consist of an enamine-based
aldol reaction.8,9 Successful extensions have included intermo-
lecular asymmetric reactions such as cross-aldol couplings,
Mannich condensations, and direct R-aminations.10
FIGURE 2. L-Phe-mediated intramolecular aldol reaction of 4.
The Hajos-Parrish-Eder-Sauer-Wiechert reaction has
been extended to prepare bicyclic ketones 511,12 bearing a variety
of substituents (R) such as methyl, ethyl, butenyl, and oxygen-
ated alkyl and by the use of catalytic or stoichiometric amounts
of L-amino acids, especially L-Phe (Figure 2).13-16 Notwith-
standing the variety of substituents, those reactions mediated
by L-amino acids afforded the products 5 whose absolute
configurations at the quaternary carbon were invariably S.
There has been little development of this reaction for the
FIGURE 3. Example of an intramolecular aldol reaction to construct
a 6-7 fused bicycle.
purpose of constructing new ring systems encompassing a seven-
membered or larger carbocycle except for two studies reported
independently by Swaminathan and our group.17,18 Swaminathan
et al. investigated attempts to bring about the L-Pro- or L-Phe-
mediated asymmetric aldol reaction of trione 6 involving a
seven-membered carbocycle, but no optically active product 7
was isolated under diverse reaction conditions. They also
observed that the reaction of trione 6 involving pyrrolidine in
acetic acid (AcOH) afforded racemic 719 in 60-65% yield
(Figure 3).17b This result demonstrates that the possibility exists
for realizing enamine-based asymmetric aldol reactions of 6
when mediated by an amino acid to afford chiral 7.
On the other hand, we reported that the amino acid mediated
diastereomeric intramolecular aldol reaction of trione 8 bearing
a chiral acetonide moiety afforded cyclized products 10 and
11.18 During these studies, we observed that the diastereose-
lectivity of this reaction did not depend on the stereostructure
of the D- or L-amino acid because the same stereoselectivity
was observed irrespective of the absolute configuration of the
catalyst with the exception of Pro derivative 9.20 Although the
reaction proceeded smoothly in the presence of various cyclic
or acyclic amino acids, enone 11 was obtained as the major
product in most cases, and diastereoselectivities observed for
10 and 11 gravitated around 40:60. Clearly, the chirality in the
great majority of the amino acids was not reflected in the
stereostructure of the products. Because we needed to synthesize
10 to develop an ongoing natural product synthesis, these results
were inadequate. The best means for us to prepare the desired
10 was secured in the presence of a stoichiometric amount of
9 with only 16% diastereomeric excess (Figure 4). However,
we achieved the inverted diastereoselectivity when using the
enantiomer of 9 as a mediator.
(5) Recent applications of 3b: (a) Shah, N.; Scanlan, T. S. Bioorg. Med.
Chem. Lett. 2004, 14, 5199. (b) D´ıaz, S.; Gonza´lez, A.; Bradshaw, B.;
Cuesta, J.; Bonjoch, J. J. Org. Chem. 2005, 70, 3749.
(6) Buchschacher, P.; Cassal, J.-M.; Fu¨rst, A.; Meier, W. HelV. Chim.
Acta 1977, 60, 2747.
(7) Davies, S. G.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Chem.
Commun. 2005, 3802.
(8) (a) Brown, K. L.; Damm, L.; Dunitz, J. D.; Eschenmoser, A.; Hobi,
R.; Kratky, C. HelV. Chim. Acta 1978, 61, 3108. (b) Agami, C.; Sevestre,
H. J. Chem. Soc., Chem. Commun. 1984, 1385. (c) Agami, C.; Puchot, C.;
Sevestre, H. Tetrahedron Lett. 1986, 27, 1501. (d) Agami, C.; Puchot, C.
J. Mol. Catal. 1986, 38, 341. (e) Agami, C.; Platzer, N.; Sevestre, K. Bull.
Chim. Soc. Fr. 1987, 358. (f) Agami, C.; Platzer, N. Bull. Chim. Soc. Fr.
1998, 499. (g) Gathaergood, N. Aust. J. Chem. 2002, 55, 615.
(9) (a) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 11273.
(b) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911. (c)
Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am. Chem. Soc. 2003,
125, 16. (d) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am.
Chem. Soc. 2003, 125, 2475. (e) List, B.; Hoang, L.; Martin, H. J. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5839. (f) List, B. Acc. Chem. Res. 2004,
37, 548. (g) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-
Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558. (h) Cheong, P. H-Y.; Houk,
K. N. Synthesis 2005, 1533.
(10) For reviews: (a) List, B. Tetrahedron 2002, 58, 5573. (b) Notz,
W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580. (c)
Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim, 2005. (d) List, B. Chem. Commun. 2006, 819.
(11) Recent applications of 5a: (a) Hagiwara, H.; Sakai, H.; Uchiyama,
T.; Ito, Y.; Morita, N.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc.,
Perkin Trans. 1 2002, 583. (b) Arai, N.; Ui, H.; Omura, S.; Kuwajima, I.
Synlett 2005, 1691. (c) Brady, T. P.; Kim, S. H.; Wen, K.; Kim, C.;
Theodorakis, E. A. Chem.-Eur. J. 2005, 11, 7175.
(12) Recent applications of 5b: (a) Katoh, T.; Nakatani, M.; Shikita,
S.; Sampe, R.; Ishiwata, A.; Ohmori, O.; Nakamura, M.; Terashima, S.
Org. Lett. 2001, 3, 2701. (b) Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe,
A.; Furet, P.; Giannis, A.; Waldmann, H. J. Am. Chem. Soc. 2001, 123,
11586. (c) Ling, T.; Poupon, E.; Rueden, E. J.; Theodorakis, E. A. Org.
Lett. 2002, 4, 819. (d) Ling, T.; Rivas, F.; Theodorakis, E. A. Tetrahedron
Lett. 2002, 43, 9019. (e) Ling, T.; Poupon, E.; Rueden, E. J.; Kim, S. H.;
Theodorakis, E. A. J. Am. Chem. Soc. 2002, 124, 12261. (f) Honda, T.;
Favaloro, F. G., Jr.; Janosik, T.; Honda, Y.; Suh, N.; Sporn, M. B.; Gribble,
G. W. Org. Biol. Chem. 2003, 1, 4384. (g) Favaloro, F. G., Jr.; Honda, T.;
Honda, Y.; Gribble, G. W.; Suh, N.; Risingsong, R.; Sporn, M. B. J. Med.
Chem. 2002, 45, 4801. (h) Iwasaki, K.; Nakatani, M.; Inoue, M.; Katoh, T.
Tetrahedron Lett. 2002, 43, 7937. (i) Ling, T.; Rivas, F.; Theodorakis, E.
A. Tetrahedron Lett. 2002, 43, 9019. (j) Guo, Z.; Vangapandu, S.; Nimrod,
A.; Walker, L. A.; Sindelar, R. D. Med. Chem. 2005, 1, 3. (k) Takikawa,
H.; Imamura, Y.; Sasaki, M. Tetrahedron 2006, 62, 39.
Thus, application of the Hajos-Parrish-Eder-Sauer-
Wiechert reaction for constructing 6-7 fused ring systems
(17) (a) Selvarajan, R.; John, J. P.; Narayanan, K. V.; Swaminathan, S.
Tetrahedron 1966, 22, 949. (b) Rajagopal, D.; Narayanan, R.; Swaminathan,
S. Proc. Indian Acad. Sci. 2001, 113, 197. (c) Malathi, R.; Rajagopal, D.;
Hajos, Z. G.; Swaminathan, S. J. Chem. Sci. 2004, 116, 159.
(18) Inomata, K.; Barrague´, M.; Paquette, L. A. J. Org. Chem. 2005,
70, 533.
(19) Ireland, R. E.; Aristoff, P. A.; Hoyng, C. F. J. Org. Chem. 1979,
44, 4318.
(20) Applications of 9 for asymmetric aldol reactions: (a) Itagaki, N.;
Kimura, M.; Sugahara, T.; Iwabuchi, Y. Org. Lett. 2005, 7, 4185. (b) Itagaki,
N.; Sugahara, T.; Iwabuchi, Y. Org. Lett. 2005, 7, 4181. (c) Hayashi, Y.;
Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew. Chem.
Int. Ed. 2006, 45, 958.
(13) Danishefsky, S.; Cain, P. J. Am. Chem. Soc. 1976, 98, 4975.
(14) Banerjee, D. K.; Kasturi, T. R.; Sarkar, A. Proc. Indian Acad. Sci.
1983, 92, 181.
(15) Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1990, 112, 6429.
(16) Shigehisa, H.; Mizutani, T.; Tosaki, S.; Ohshima, T.; Shibasaki,
M. Tetrahedron 2005, 61, 5057.
124 J. Org. Chem., Vol. 72, No. 1, 2007