10.1002/anie.201814275
Angewandte Chemie International Edition
COMMUNICATION
J. W. Twisk, B. A. Dijkmans, L. Aarden, G. J. Wolbink, JAMA 2011, 305,
1460-1468.
two weeks post the final injection. As shown in Fig. 3d, the
pretreatment resulted in a 51-fold lower anti-uricase IgG titer
compared with the control group, demonstrating a persistent
antigen-specific tolerance. As a benefit, the rapamycin-antigen
conjugation strategy may also have the potential to be used as a
treatment for autoimmune disease in addition to the reduction of
ADAs.
In conclusion, we report a proactive strategy to reduce ADAs
of the PEGylated biologic drugs via immunomodulatory
bioconjugation chemistry. The rapamycin derivative was
conjugated to PEGylated proteins via a cleavable disulfide linker.
In vitro tests showed that the conjugated rapamycin is capable
of inhibiting the maturation of dendritic cells. In vivo studies
demonstrated that rapamycin conjugated via the cleavable linker
effectively mitigates ADAs against PEGylated proteins. Further
studies proved that the inhibition of ADAs was a result of the
antigen-specific immune tolerance induced to the conjugated
protein, which avoided systemic immune suppression and the
risk of increased susceptibility to infections. All of these results
[4]
[5]
a) N. Chirmule, V. Jawa, B. Meibohm, AAPS J. 2012, 14, 296-302; b) M.
S. Hershfield, N. J. Ganson, S. J. Kelly, E. L. Scarlett, D. A. Jaggers, J.
S. Sundy, Arthritis Res. Ther. 2014, 16, R63; c) P. E. Lipsky, L. H.
Calabrese, A. Kavanaugh, J. S. Sundy, D. Wright, M. Wolfson, M. A.
Becker, Arthritis Res. Ther. 2014, 16, R60.
a) A. J. Chirino, M. L. Ary, S. A. Marshall, Drug Discov. Today 2004, 9,
82-90; b) E. M. Pelegri-O'Day, E. W. Lin, H. D. Maynard, J. Am. Chem.
Soc. 2014, 136, 14323-14332; c) S. N. S. Alconcel, A. S. Baas, H. D.
Maynard, Polym. Chem. 2011, 2, 1442; d) P. Zhang, F. Sun, C. Tsao, S.
Liu, P. Jain, A. Sinclair, H. C. Hung, T. Bai, K. Wu, S. Jiang, Proc. Natl.
Acad. Sci. U. S. A. 2015, 112, 12046-12051; e) P. Zhang, P. Jain, C.
Tsao, Z. Yuan, W. Li, B. Li, K. Wu, H. C. Hung, X. Lin, S. Jiang, Angew.
Chem. Int. Ed. Engl. 2018, 57, 7743-7747.
[6]
[7]
a) P. Zhang, F. Sun, S. Liu, S. Jiang, J. Control. Release 2016, 244,
184-193; b) Q. Yang, S. K. Lai, Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 2015, 7, 655-677.
R. E. Rau, Z. Dreyer, M. R. Choi, W. Liang, R. Skowronski, K. P.
Allamneni, M. Devidas, E. A. Raetz, P. C. Adamson, S. M. Blaney, M. L.
Loh, S. P. Hunger, Pediatr. Blood Cancer 2018, 65.
[8]
[9]
A. Parenky, H. Myler, L. Amaravadi, K. Bechtold-Peters, A. Rosenberg,
S. Kirshner, V. Quarmby, AAPS J. 2014, 16, 499-503.
indicate that rapamycin bioconjugation offers
a promising
approach to minimize the issues of ADAs, which are associated
with adverse hypersensitivity reactions and the loss in the
efficacy of otherwise effective drugs.
a) H. Hackstein, T. Taner, A. F. Zahorchak, A. E. Morelli, A. J. Logar, A.
Gessner, A. W. Thomson, Blood 2003, 101, 4457-4463; b) T. Taner, H.
Hackstein, Z. Wang, A. E. Morelli, A. W. Thomson, Am. J. Transplant
2005, 5, 228-236; c) H. R. Turnquist, G. Raimondi, A. F. Zahorchak, R.
T. Fischer, Z. Wang, A. W. Thomson, J. Immunol. 2007, 178, 7018-
7031.
Acknowledgements
[10] a) R. A. Maldonado, R. A. LaMothe, J. D. Ferrari, A. H. Zhang, R. J.
Rossi, P. N. Kolte, A. P. Griset, C. O'Neil, D. H. Altreuter, E. Browning,
L. Johnston, O. C. Farokhzad, R. Langer, D. W. Scott, U. H. von
Andrian, T. K. Kishimoto, Proc. Natl. Acad. Sci. U. S. A. 2015, 112,
E156-165; b) T. K. Kishimoto, J. D. Ferrari, R. A. LaMothe, P. N. Kolte,
A. P. Griset, C. O'Neil, V. Chan, E. Browning, A. Chalishazar, W.
Kuhlman, F. N. Fu, N. Viseux, D. H. Altreuter, L. Johnston, R. A.
Maldonado, Nat. Nanotechnol. 2016, 11, 890-899; c) J. Shi, P. W.
Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer 2017, 17, 20-
37; d) N. Kamaly, B. Yameen, J. Wu, O. C. Farokhzad, Chem. Rev.
2016, 116, 2602−2663.
This work was supported by the Defense Threat Reduction
Agency (HDTRA1-13-1-0044) and the University of Washington.
We are thankful to Dr. K.L. Rock (University of Massachusetts
Medical Center, Worcester, MA) for providing the mouse
dendritic cell line DC2.4 as a generous gift.
Keywords: bioconjugation • immune response • PEGylation •
protein therapeutic • rapamycin
[11] R. T. Abraham, Curr. Opin. Immunol. 1998, 10, 330-336.
[12] a) J. Gu, M. E. Ruppen, P. Cai, Org. Lett. 2005, 7, 3945-3948; b) E. I.
Graziani, Nat. Prod. Rep. 2009, 26, 602-609.
[1]
[2]
[3]
G. Shankar, C. Pendley, K. E. Stein, Nat. Biotechnol. 2007, 25, 555-
561.
[13] A. M. Eiden, S. Zhang, J. M. Gary, J. K. Simmons, B. A. Mock, Clin.
Cancer Res. 2016, 22, 277-283.
S. Mitragotri, P. A. Burke, R. Langer, Nat. Rev. Drug. Discov. 2014, 13,
655-672.
[14] a) K. Mahnke, E. Schmitt, L. Bonifaz, A. H. Enk, H. Jonuleit, Immunol.
Cell. Biol. 2002, 80, 477-483; b) M. B. Lutz, G. Schuler, Trends
Immunol. 2002, 23, 445-449.
a) N. Casadevall, J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-
Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, B. Varet, P.
Mayeux, N. Engl. J. Med. 2002, 346, 469-475; b) G. M. Bartelds, C. L.
Krieckaert, M. T. Nurmohamed, P. A. van Schouwenburg, W. F. Lems,
This article is protected by copyright. All rights reserved.