on silica gel with ethyl acetate / Petroleum ether (1:10-1:3) to give the corresponding compounds (3a-3q). When CuTC (3.0 equiv., 0.6
mol, 114 mg) is replaced by CuFC (3.0 equiv., 0.6 mol, 104 mg) in the above conditions, products (5a-5e) can be obtained.
Compound 3a: Yellow solid (yield: 75 %), m.p. 145 – 146 ºC. 1H NMR (600 MHz, CDCl3): δ 7.54 (d, 2H, J = 7.2 Hz), 7.39 (t, 2H, J
= 6.4 Hz), 7.33 – 7.27 (m, 4H), 7.23 (t, 3H, J = 7.8 Hz), 7.06 (d, 1H, J = 2.8 Hz), 6.96 (s, 1H), 6.93, (t, 1H, J= 4.8 Hz), 4.25 – 4.12 (m,
4H), 2.56 (s, 3H), 2.54 (s, 3H), 1.25( t, 3H, J = 1.2 Hz), 1.06 (t, 3H, J = 1.2 Hz). 13C NMR (150 MHz, CDCl3): δ 168.10 , 167.01,
166.17, 164.17, 158.84, 153.97, 149.06, 140.76, 139.72, 137.40, 130.08, 129.58, 129.53, 128.36, 128.31, 128.25, 127.86, 127.50,
127.22, 119.96, 112.31, 61.67, 60.41, 54.81, 22.88, 21.26, 14.24, 13.63; HRMS: calcd. for C32H31N4O4S+ [M+H]+: 567.2066; found
567.2063.
Single crystal X-ray diffraction for 3l: Colorless crystal sample with the size of 0.34 mm × 0.33 mm × 0.27 mm of 3l was chosen
under a microscope. Then crystal data was collected on a Bruker SMART ApexII CCD diffractometer using graphite-monochromated
Mo Kα radiation (λ=0.71073 Å) at 300.79 K. The structure was solved using a direct method and refined by full-matrix least squares
on F2 using the SHELXTL crystallographic software package.
Acknowledgment
Financial support from the National Natural Science Foundation of China (Nos. 21362032 and 21362031), the NSF of Gansu
Province (No. 1208RJYA083).
References
[1] N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O
bond-forming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566.
[2] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95 (1995) 2457-2483.
[3] J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bond formation one century after the discovery of the Ullmann reaction, Chem. Rev.
102 (2002) 1359-1470.
[4] S.V. Ley and A.W. Thomas, Modern Synthetic Methods for Copper-Mediated C (aryl)-O, C (aryl)-N, and C (aryl)-S Bond Formation, Angew. Chem. Int.
Ed. 42 (2003) 5400-5449.
[5] (a) N.E. Leadbeater and M. Marco, palladium catalysis of the Suzuki reaction in water using microwave heating, Org. Lett. 4 (2002) 2973-2976;
(b) D. Nöteberg, W. Schaal, E. Hamelink, L. Vrang, M. Larhed, High-speed optimization of inhibitors of the malarial proteases plasmepsin I and II, J. Comb.
Chem. 5 (2003) 456-464.
[6] (a) G. Burton, P. Cao, G. Li, R. Rivero, Palladium-catalyzed intermolecular coupling of aryl chlorides and sulfonamides under microwave irradiation, Org.
Lett. 5 (2003) 4373-4376;
(b) A. Jensen, X. Liang, D. Tanner, N. Skjaerbaek, Rapid and efficient microwave-assisted synthesis of aryl aminobenzophenones using Pd-catalyzed
amination, J. Org. Chem. 69 (2004) 4936-4947.
[7] (a) P. Walla, C.O. Kappe, Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides, Chem. Commun. 5 (2004) 564-565;
(b) I. Mutule, E. Suna, A convenient microwave assisted arylzinc generation-Negishi coupling protocol, Tetrahedron Lett. 45 (2004) 3909-3912.
[8] N. Kaval, K. Bisztray, W. Dehaen, et al, Microwave-enhanced transition metal-catalyzed decoration of 2 (1H)-pyrazinone scaffolds, Molecular diversity, 7
(2003) 125-134.
[9] Y.J. Wu, H. He, A. L'Heureux, Copper-catalyzed coupling of (S)-1-(3-bromophenyl)-ethylamine and N–H containing heteroarenes using microwave heating,
Tetrahedron lett. 44 (203) 4217-4218.
[10] (a) L.S. Liebeskind, J. Srogl, Thiol ester-boronic acid coupling. A mechanistically unprecedented and general ketone synthesis, J. Org. Chem. 122 (2000)
11260-11261;
(b) Y. Yu, L.S. Liebeskind, Copper-mediated, palladium-catalyzed coupling of thiol esters with aliphatic organoboron reagents, J. Org. Chem. 69 (2004)
3554-3557;
(c) H. Yang, H. Li, R. Wittenberg, et al., Ambient temperature synthesis of high enantiopurity N-protected peptidyl ketones by peptidyl thiol ester-boronic
acid cross-coupling, J. Am. Chem. Soc. 129 (2007) 1132-1140.
[11] (a) L.S. Liebeskind, J. Srogl, Heteroaromatic thioether-boronic acid cross-coupling under neutral reaction conditions, Org. Lett. 4 (2002) 979-981;
(b) C.L. Kusturin, L.S. Liebeskind, W.L. Neumann, A new catalytic cross-coupling approach for the synthesis of protected aryl and heteroaryl amidines,
Org. Lett. 4 (2002) 983-985;
(c) C. Savarin, J. Srogl, L.S. Liebeskind, Substituted alkyne synthesis under nonbasic conditions: Copper carboxylate-mediated, palladium-catalyzed
thioalkyne-boronic acid cross-coupling, Org. Lett. 3 (2001) 91-93.
[12] C. Kusturin, L.S. Liebeskind, H. Rahman, K. Sample, B. Schweitzer, Switchable catalysis: Modular synthesis of functionalized pyrimidinones via selective
sulfide and halide cross-coupling chemistry, Org. Lett. 5 (2003) 4349-4352.
[13] (a) H. Prokopcova, C.O. Kappe, Copper-catalyzed C-C coupling of thiol esters and boronic acids under aerobic conditions, Angew. Chem. Int. Ed. 47
(2008) 3674-3676;