3
C bond with this green approach are in due course in our
laboratory.
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (No. 21102142), the Outstanding Young Scientist Award
Foundation of Shandong Province (No. BS2013YY002,
BS2011YY007) and Qingdao Special Research Foundation of
Science and Technology (14-2-4-70-jch). Financial supports
from Talents of High Level Scientific Research Foundation (No.
Scheme 3 The reaction of 2-methylquinoline with 2p and 2q.
631223, 631009) of Qingdao Agricultural University is also
gratefully acknowledged.
These phenomena might be rationalized as follows: The
aromatic groups of aldehdyes 2p and 2q, i.e. 4-formylphenyl and
4
-pyridyl are electron-deficient ones. The dehydration process
consists of three steps, i.e. protonation of the hydroxyl group,
elimination of H O and deprotonation of the carbocationic
References and notes
2
1
. (a) Baxter, P. N. W.; Lehn, J. M.; Fischer, J.; Youinou, M. T. Angew.
Chem. Int. Ed. Engl. 1994, 33, 2284; (b) Zheng, G. L.; Dwoskin, P.;
Deaciuc, A. G.; Zhu, J.; Jones, M. D.; Crooks, P. A. Bioorg. Med. Chem.
2005, 13, 3899; (c) Henry, D. Tetrahedron 2004, 60, 6043; (d) Wilson, K.
J.; Niel, M. B. Van; Cooper, L.; Bloomfield, D.; O’Connor, D.; Fish, L. R.;
MacLeod, A. M. Bioorg. Med. Chem. Lett. 2007, 17, 2643; (e) Campeau,
L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058; (f) Laird, T. Org.
Process Res. Dev. 2006, 10, 851.
intermediate 7 (Scheme 4). The stability of 7 strongly depends on
the electronic characteristic of the adjacent aromatic groups. For
the sake of the strong electron-deficiency of 4-formylphenyl and
4
-pyridyl, the activation energy of dehydration step is very high
and the intermediate 7 is very hard to generate, therefore a
considerable amount of the alcohol 5ap and 5aq still exist in the
reaction even in the presence of TfOH.
2. Michael, J. P. Nat. Prod. Rep. 2005, 22, 627.
3
. Zwaagstra, Mariël E.; Schoenmakers, Saskia H. H. F.; Nederkoorn, Paul H.
J.; Gelens, E.; Timmerman, H.; Zhang, M. Q. J. Med. Chem. 1998, 41,
1
439.
4
. (a) Zamboni, R.; Belley, M.; Champion, E.; Charette, L.; DeHaven, R.;
Frenette, R.; Gauthier, J. Y.; Jones, T. R.; Leger, S.; Masson, P.;
McFarlane, C. S.; Metters, K.; Pong, S. S.; Piechuta, H.; Rokach, J.;
ThBrien, M.; Williams, H. W. R.; Young, R. N. J. Med. Chem. 1992, 35,
3
832; (b) King, A.; Corley, E. G.; Anderson, R. K.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1993, 58, 3731; (c)
McNamara, J. M.; Leazer, J. L.; Bhupathy, M.; Amato, J. S.; Reamer, R.
A.; Reider, P. J.; Grabowski, E. J. J. J. Org. Chem., 1989, 54, 3717.
Scheme 4 Rationalization for the formation of 2p and 2q.
5
. Merschaert, A.; Boquel, P.; Hoeck, J.-P. V.; Gorissen, H.; Borghese, A.;
Bonnier, B.; Mockel, A.; Napora, F. Org. Process Res. Dev. 2006, 10, 776.
Theoretically, the mechanism of this tandem process might
be rationalized as follows (Scheme 5): the enamine intermediate
B generated from 1 via tautomerization attacks the carbonyl
group of aromatic aldehyde through transition state C in which
the intermediate B and the aldehyde 1 aggregate together by
hydrogen bonding, furnishing the alcohol intermediate D.
Because of the H-bonding interaction between nitrogen atom and
oxygen atom in D, the equilibrium between D and E is more
likely shifted to the left. Thus after subsequent dehydration, the
6
. (a) Best, D.; Lam, H. W. J. Org. Chem. 2014, 79, 831; (b) Carey, J. S.;
Laffan, L.; Thompson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,
2337; (c) Dugger, R. W.; Ragan, J. A.; D. Ripin, H. B. Org. Process Res.
Dev. 2005, 9, 253; (d) Buffat, M. G. P. Tetrahedron 2004, 60, 1701; (d)
Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
7
. (a) Nakao, Y. Synthesis 2011, 2011, 3209; (b) Zeni, G.; Larock, R. C.
Chem. Rev. 2006, 106, 4644; (c) Nakamura, I.; Yamamoto, Y. Chem. Rev.
2004, 104, 2127.(d) Zhang, Y.-G.; Xu, J.-K.; Li, X.-M.; Tian, S.-K. Eur. J.
Org. Chem. 2013, 2013, 3648; (e) Sridharan, V.; Avendano, C.; Carlos
Menendez, J. Tetrahedron, 2009, 65, 2087; (f) Wang, T.; Zhou, L.-G.; Li,
Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X; Chan, Albrt
S. C. J. Am. Chem. Soc. 2011, 133, 9878; (g) Civicos, J. F; Alonso, D. A.;
Najera, C. Adv. Syn. Cat. 2011, 353, 1683; (h) Li, V. M.; Gavrishova, T.
N.; Budyka, M. F. Russ. J. Org. Chem. 2012, 48, 823; (i) Motokura, K.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2004, 45, 6029; (j)
Li, A.-H.; Beard, D.; Coate, H.; Honda, A.; Kadalbaioo, M.; Kleinberg, A.;
Laufer, R.; Mulvihill, K. M; Nigro, A.; Rastogi, P.; Sherman, D.; Siu, K.
W.; Steinig, A. G.; Wang, T.; Werner, D.; Crew, A. P.; Mulvihill, M. J.
Synthesis 2010, 1678; (k) Li, A.- H.; Ahmed, E.; Chen, X.; Cox, M.; Crew,
A. P.; Dong, H.-Q.; Jin, M.; Ma, L.; Panicker, B.; Siu,,K. W.; Steinig, A.
G.; Stolz, K. M.; Tavares, P. A. R.; Volk, B.; Weng, Q.; Werner, D.;
Mulvihill, M. J. Org. Biomol. Chem. 2007, 5, 61; (l) Chaudhari, C.; Hakim
Siddiki, S. M.; Shimizu, K. K.; Tetrahedron Lett. 2013, 54, 6490; (m)
Gulakova, E. N.; Sitin, A. G.; Kuzmina, L. G.; Fedorova, O. A. Russ. J.
Org. Chem. 2011, 47, 245; (n) Staderini, M.; Cabezas, N.; Maria, L.;
Menendez, J. C. Synlett 2011, 2577; (o) Fakhfakh, M. A.; Fournet, A.;
Prina, E.; Mouscadet, J.- F.; Franck, X.; Hocquemiller, R.; Figadere, B.
Org. Biomol. Chem. 2003, 11, 5013; (p) Zhang, Y.-G.; Xu, J.- K.; Li, X.-
M.; Tian, S.-K. Eur. J. Org. Chem. 2013, 2013, 3648; (q) Sakamoto, T.;
Yoshizawa, H.; Yamanaka, H. Chem. Pharm. Bull. 1984, 32, 2005.
(
E)-configured 3 is finally afforded.
3
Scheme 5 Mechanism for sp functionalization of 2-alkylazaaenes.
Conclusions
In summary, we have developed a facile catalyst-free
protocol to synthesize (E)-2-alkenylquinoline derivatives for the
first time. This approach offers organic chemists a novel atom-
3
economic pathway to directly functionalize sp C-H bond of 2-
8
.
For selected examples, see: (a) Mousseau, J. J.; Bull, J. A.; Charette, A.
B.; Angew. Chem. Int. Ed. 2010, 49, 1115; (b) Wu, J.; Cui, X.; Chen, L.;
Jiang,G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888; (c) Cho, S. H.;
Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254; (d) Nakao,Y.;
Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448; (e)
Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2007, 46,
alkylquinolines and (E)-2-alkenylquinoline derivatives can be
further employed as synthetic precursors to build a wide range of
functionalized heterocycles. Further research of building new C-