S. Rani, Y. D. Vankar / Tetrahedron Letters 44 (2003) 907–909
909
tion with NBS as reported by Lichtenthaler. The
present sequence of reactions is, therefore, useful and
offers a convenient alternative to the existing method of
preparing 1,2-diols, enol acetates as well as ulosyl bro-
mides. Overall, we believe that this one step conversion
of glycals into the corresponding 1,2-diols should find
wide application in organic synthesis.
7. Bols, M. Chem. Commun. 1992, 913.
8. (a) Lichtenthaler, F. W.; Schneider-Adams, T. J. Org.
Chem. 1994, 59, 6728; (b) Broder, W.; Kunz, H. Carbo-
hydr. Res. 1993, 249, 221; (c) Schmidt, R. R.; Effen-
berger, G. Carbohydr. Res. 1987, 171, 59; (d) Wu, E.;
Wu, Q. Carbohydr. Res. 1993, 250, 327.
9. Danishefsky, S. J.; Halcomb, R. L. J. Am. Chem. Soc.
1989, 111, 6661.
Typical experimental procedure: To a solution of triben-
zyl glucal (100 mg, 0.24 mmol) in 2 mL of an acetone-
water (2:0.5) mixture, was added a mixture of Oxone
10. Iserloh, U.; Dudkin, V.; Wang, Z.-G.; Danishefsky, S. J.
Tetrahedron Lett. 2002, 43, 7027.
11. Spectral and analytical data of the two new diacetates
(
442 mg, 3 mmol) and NaHCO (121 mg, 6 mmol)
are: (corresponding to entry 3, Table 1): [h] =+34.6° (c
3
D
1
−
1
slowly at 20–25°C in small portions over a period of
0–60 min in a stoppered flask with continuous stirring.
1.1, CH Cl ). IR (neat) w : 1754 cm . H NMR
2 2 max
3
(CDCl 400 MHz): l 7.18–7.28 (m, 10H, Ar-H), 6.2 (d,
3
After the reaction was complete (TLC monitoring),
acetone was evaporated and the remaining semi-solid
mass was filtered and washed with EtOAc (3×15 mL).
The organic layer was washed with water (2×15 mL),
and brine (15 mL) and dried over Na SO . Evaporation
of solvent gave the diol which was purified by column
chromatography. Acetylation of the diol was done in
the usual manner and the product characterised by
spectroscopic and analytical means.
1H, J 3.7 Hz, H-1 a-anomer), 5.52 (d, 1H, J 8.3 Hz, H-1
b-anomer), 4.97 (t, 1H, J1,2 8.3 J2,3 9.0 Hz, H-2 b-
anomer), 4.92 (dd, 1H, J1,2 3.7 J2,3 10.0 Hz, H-2 a-
anomer), 4.59–4.81 (m, 4H, CH Ph), 3.93 (t, 1H, J
2
2,3
10.0, J3,4 9.7 Hz, H-3 a-anomer), 3.64 (t, 1H, J2,3 9, J3,4
9.3 Hz, H-3 b-anomer), 3.7–3.89 (m, 3H, H-6, H-6%, H-4),
3.36–3.39 (m, 1H, H-5), 2.04 and 1.91 (2s, 6H, 2×
-OCOCH3 a-anomer), 2.01 and 1.87 (2s, 6H, 2×
-OCOCH b-anomer), 0.8–0.84 (m, 9H, (CH ) −SiMe −),
2
4
3
3 3
2
13
−
1
0.02–0.01 (m, 6H, (CH ) Siꢀ). C NMR (100 MHz): l
69.87, 169.42, 169.09, 138.32, 138.07, 138.00, 128.46,
3
2
Acknowledgements
128.44, 128.42, 128.39, 127.94, 127.87, 127.85, 127.77,
1
7
27.70, 127.59, 92.08, 89.96, 82.57, 79.84, 77.09, 76.84,
6.50, 75.45, 75.30, 75.18, 75.01, 74.11, 72.08, 71.95,
We thank the department of Science and Technology,
New Delhi for financial support through a project
61.50, 61.44, 29.64, 25.84, 20.90, 20.83, 20.73, 20.64,
+
18.25, –5.13, –5.45. ESI: m/z 576 (M+NH
for C30
7.53%.
) . Anal. calcd
H O Si: C, 64.49; H, 7.58%. Found: C, 64.47; H,
42 8
4
(
SP/S1/G-21/2001). One of us (SR) thanks the Council
of Scientific and Industrial Research, New Delhi for a
Senior Research Fellowship. We thank the referee who
pointed out Ref. 12 to us.
(Diacetate corresponding to entry 4, Table 1): [h]
=+48°
(c 1.25, CH Cl ). IR (neat) wmax: 1757 cm . H NMR
2 2
D
−
1
1
(
CDCl 400 MHz): l 7.26–7.35 (m, 5H, Ar-H), 6.23 (d,
3
1
H, J 3.9 Hz, H-1 a-anomer), 5.64 (d, 1H, J 8.0 Hz, H-1
References
b-anomer), 5.07 (dd, 1H, J1,2 8.0 J2,3 9.04 Hz, H-2
b-anomer), 5.04 (dd, 1H, J1,2 3.9 J2,3 9.5 Hz, H-2 a-
1
. Pachamuthu, K.; Paul, S.; Geyer, A.; Lokesh Babu, J.;
anomer), 4.84 (dd, 2H, J 10.0, J 12.2 Hz CH
2
Ph), 4.65
Vankar, Y. D. J. Org. Chem., submitted.
(dd, 2H, J 14.6, J 14.9 Hz CH Ph), 3.7–3.8 (m, 4H, H-6,
2
2
3
. F u¨ rstner, A.; Konetzki, I. J. Org. Chem. 1998, 63, 3072.
. (a) Sanders, W. J.; Kiessling, L. L. Tetrahedron Lett.
H-6%, H-4, H-3 of a-anomer), 3.61 (t, 1H, J2,3 9.04, J3,4
9.28 Hz, H-3 b-anomer), 3.37–3.43 (m, 1H, H-5), 2.14 &
1
994, 35, 7335; (b) Shi, L.; Kim, Y.-J.; Gin, D. Y. J. Am.
2.0 (2s, 6H, 2×-OC(O)CH
6H, 2×-OC(O)CH b-anomer), 1.5 (d, 6H, (CH
anomer), 1.44 (d, 6H, (CH
(100 MHz): l 169.82, 169.35, 169.18, 138.60, 138.23,
128.28, 128.22, 127.75, 127.64, 127.51, 127.38, 99.66,
99.55, 92.44, 90.02, 78.69, 76.19, 74.38, 74.31, 73.97,
71.69, 70.99, 67.82, 65.82, 62.14, 61.85, 29.66, 29.09,
3
a-anomer), 2.07 and 1.97 (2s,
C- a-
C- b-anomer). C NMR
Chem. Soc. 2001, 123, 6939; (c) Charette, A. B.; Mar-
coux, J.-F.; Cote, B. Tetrahedron Lett. 1991, 32, 7215.
. (a) Vidal, T.; Haudrechy, A.; Langlois, Y. Tetrahedron
Lett. 1999, 40, 5677; (b) Hung, S.-C.; Wong, C.-H.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2671; (c) Carpin-
tero, M.; Nieto, I.; Fernandez-Mayoralas, A. J. Org.
Chem. 2001, 66, 1768.
3
)
3 2
13
)
3 2
4
29.01, 20.91, 20.79, 20.70, 20.60, 19.07, 18.99. ESI: m/z
+
5
. Barresi, F.; Hindsgual, O. J. Am. Chem. Soc. 1991, 114,
417 (M+Na) . Anal. calcd for C20
H
26
O
8
: C, 60.90; H,
9
376.
6.64%. Found: C, 60.84; H, 6.60%.
6
. Stork, G.; Kim, G. J. Am. Chem. Soc. 1992, 114, 1087.
12. Zhu, W.; Ford, W. T. J. Org. Chem. 1991, 56, 7022.