2
644
Journal of the American Ceramic Society—Deng et al.
Vol. 84, No. 11
1
0
26
S. T. Oh, K. I. Tajima, M. Ando, and T. Ohji, “Strengthening of Porous Alumina
J. C. Wang, “Young’s Modulus of Porous Materials: Part 1, Theoretical
Derivation of Modulus-Porosity Correlation,” J. Mater. Sci., 19, 801–808
(1984).
by Pulse Electric Current Sintering and Nanocomposite Processing,” J. Am. Ceram.
Soc., 83 [5] 1314–16 (2000).
1
1
27
N. Claussen, S. X. Wu, and D. Holz, “Reaction Bonding of Aluminum Oxide
RBAO) Composites: Processing, Reaction Mechanisms and Properties,” J. Eur.
Ceram. Soc., 14, 97–109 (1994).
J. C. Wang, “Young’s Modulus of Porous Materials: Part 2, Young’s Modulus
(
of Porous Alumina with Changing Pore Structure,” J. Mater. Sci., 19, 809–14
(
1984).
1
2
J. Luyten, T. V. Gestel, and E. Vanswijgenhoven, “Processing of Porous
28
K. K. Phani and S. K. Niyogi, “Young’s Modulus of Porous Brittle Solids,” J.
Ceramics”; pp. 17-B-3 in 7th International Conference on Ceramic Processing
Science (ICCPS) (Inuyama City, Aichi, Japan, 2000).
Mater. Sci., 22, 257–63 (1987).
29
K. K. Phani and S. K. Niyogi, “Elastic Modulus-Porosity Relation in Polycrys-
1
3
S. Kwon and G. L. Messing, “Constrained Densification in Boehmite-Alumina
Mixtures for the Fabrication of Porous Alumina Ceramics,” J. Mater. Sci., 33, 913–21
1998).
talline Rare-Earth Oxides,” J. Am. Ceram. Soc., 70 [12] C-362–C-366 (1987).
3
0
N. Ramakrishnan and V. S. Arunachalam, “Effective Elastic Moduli of Porous
Ceramic Materials,” J. Am. Ceram. Soc., 76 [11] 2745–52 (1993).
(
1
4
Z. Y. Deng, T. Fukasawa, M. Ando, G. J. Zhang, and T. Ohji, “High-Surface-
3
1
G. Lu, G. Q. Lu, and Z. M. Xiao, “Mechanical Properties of Porous Materials,”
J. Poro. Mater., 6, 359–68 (1999).
3
Area Alumina Ceramics Fabricated by the Decomposition of Al(OH) ,” J. Am.
Ceram. Soc., 84 [3] 485–91 (2001).
3
2
1
5
W. Duckworth, “Discussion of Ryshkewitch Paper,” J. Am. Ceram. Soc., 36 [2]
68 (1953).
R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State
Diffusion Models,” J. Appl. Phys., 32 [5] 787–92 (1961).
1
6
33
R. L. Coble, “Sintering Crystalline Solids. II. Experimental Test of Diffusion
Models in Powder Compacts,” J. Appl. Phys., 32 [5] 793–99 (1961).
R. M. Spriggs, “Expression for Effect of Porosity on Elastic Modulus of
Polycrystalline Refractory Materials, Particularly Aluminum Oxide,” J. Am. Ceram.
Soc., 44 [12] 628–29 (1961).
1
7
D. Broek, Elementary Engineering Fracture Mechanics, 4th Ed.; p. 85. Martinus
Nijhoff, The Hague, The Netherlands, 1986.
3
4
R. W. Rice, “Comparison of Physical Property-Porosity Behaviour with Mini-
1
8
F. P. Knudsen, “Dependence of Mechanical Strength of Brittle Polycrystalline
Specimens on Porosity and Grain Size,” J. Am. Ceram. Soc., 42 [8] 376–87 (1959).
mum Solid Area Models,” J. Mater. Sci., 31, 1509–28 (1996).
35R. W. Rice, “Evaluating Porosity Parameters for Porosity-Property Relations,”
1
9
R. W. Rice, “Comparison of Stress Concentration versus Minimum Solid Area
Based Mechanical Property-Porosity Relations,” J. Mater. Sci., 28, 2187–90 (1993).
J. Am. Ceram. Soc., 76 [7] 1801–808 (1993).
36
A. G. Evans, “Considerations of Inhomogeneity Effects in Sintering,” J. Am.
2
0
R. W. Rice, “Evaluation and Extension of Physical Property-Porosity Models
Based on Minimum Solid Area,” J. Mater. Sci., 31, 102–18 (1996).
Ceram. Soc., 65 [10] 497–501 (1982).
37
C. H. Hsueh, A. G. Evans, R. M. Cannon, and R. J. Brook, “Viscoelastic Stress
2
1
A. K. Mukhopadhyay and K. K. Phani, “An Analysis of Microstructural
and Sintering Damage in Heterogeneous Powder Compacts,” Acta Metall., 34 [5]
Parameters in the Minimum Contact Area Model for Ultrasonic Velocity-Porosity
9
27–36 (1986).
Relations,” J. Eur. Ceram. Soc., 20, 29–38 (2000).
38
2
2
L. C. De Jonghe, M. N. Rahaman, and C. H. Hsueh, “Transient Stresses in
Bimodal Compacts during Sintering,” Acta Metall., 34 [7] 1467–71 (1986).
S. Kwon and G. L. Messing, “Sintering of Mixtures of Seeded Boehmite and
Ultrafine ␣-Alumina,” J. Am. Ceram. Soc., 83 [1] 82–88 (2000).
3
9
2
3
A. P. Roberts and E. J. Garboczi, “Elastic Properties of Model Porous Ceramics,”
J. Am. Ceram. Soc., 83 [12] 3041–48 (2000).
F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2]
3–89 (1984).
8
4
0
2
4
B. D. Flinn, R. K. Bordia, A. Zimmermann, and J. Rodel, “Evolution of Defect
J. L. Shi, “Solid State Sintering of Ceramics: Pore Microstructure Models,
Densification Equations and Applications,” J. Mater. Sci., 34, 3801–12 (1999).
Size and Strength of Porous Alumina during Sintering,” J. Eur. Ceram. Soc., 20,
2
5
E. A. Dean, “Elastic Moduli of Porous Sintered Materials as Modeled by a
2561–68 (2000).
4
1
Variable-Aspect-Ratio Self-Consistent Oblate-Spheroidal-Inclusion Theory,” J. Am.
Ceram. Soc., 66 [12] 847–54 (1983).
R. W. Rice, “Limitations of Pore-Stress Concentrations on the Mechanical
Properties of Porous Materials,” J. Mater. Sci., 32, 4731–36 (1997).
Ⅺ