(0.94 g, 5.5 mmol), 2 (4.68 g, 12 mmol), piperidine (0.6 ml) and
n-propanol (30 ml) was refluxed for 1 day. After completing the
reaction, the reactant was cooled to room temperature and excess
methanol was added to obtain a red solid. Then reprecipitation
in methanol/methylene chloride yielded the red solid of 3 (3.43 g,
0.97–0.60 (b, 10H). Anal. Calcd: C, 89.62; H, 10.37; N, 0.0074; S,
0.0085. Found: C, 89.60; H, 10.36; N, 0.015%.
Acknowledgements
1
68%). H NMR (400 MHz, DMSO-d6, ppm): d 7.65 (m, 6H),
This work was supported by BK21 of the Ministry of Education
and Human Resources Development and Dongjin Semichem.
Co.
7.37 (m, 4H), 7.24 (d, 2H), 7.09 (d, 2H), 6.98 (d, 2H), 6.79 (s, 2H),
3.89 (t, 4H), 1.66 (q, 4H), 1.38 (m, 4H), 1.25 (m, 8H) 0.83 (t, 6H).
13C NMR (100 MHz, DMSO-d6, ppm): d 159.3, 156.0, 149.4,
149.2, 141.9, 134.7, 130.9, 130.3, 130.0, 129.3, 127.9, 125.1, 123.3,
118.1, 116.4, 115.5, 114.3, 56.1, 47.0, 30.9, 25.9, 25.6, 21.9, 13.8.
Anal. Calcd for C48H44Br2N4OS2: C, 62.88; H, 4.84; N, 6.11; S,
6.99. Found: C, 63.05; H, 4.86; N, 6.19; S, 6.81%.
References
1 (a) Y. Zhu, K. M. Gibbons, A. P. Kulkarni and S. A. Jenekhe,
Macromolecules, 2007, 40, 804; (b) F. Huang, Y. Zhang, M. S. Liu,
Y.-J. Cheng and A. K.-Y. Jen, Adv. Funct. Mater., 2007, 17, 3808.
2 (a) M.-C. Hung, J.-L. Liao, S.-A. Chen, S.-H. Chen and A.-C. Su,
J. Am. Chem. Soc., 2005, 127, 14576; (b) S. H. Chen, A. C. Su and
S. A. Chen, J. Phys. Chem. B, 2005, 109, 10067; (c) S. H. Chen,
A. C. Su, C. H. Su and S. A. Chen, Macromolecules, 2005, 38, 379.
3 (a) H. K. Shim and J. I. Jin, Adv. Polym. Sci., 2002, 158, 194; (b)
S. K. Lee, T. Ahn, N. S. Cho, J.-I. Lee, Y. K. Jung, J. Lee and
H. K. Shim, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1199;
(c) S. K. Lee, D.-H. Hwang, B.-J. Jung, N. S. Cho, J. Lee,
J.-D. Lee and H.-K. Shim, Adv. Funct. Mater., 2005, 15, 1647; (d)
N. S. Cho, J.-H. Park, S. K. Lee and H.-K. Shim, Macromolecules,
2006, 39, 177; (e) S. K. Lee, B.-J. Jung, T. Ahn, Y. K. Jung,
J. I. Lee, I.-N. Kang, J. Lee, J.-H. Park and H. K. Shim, J. Polym.
Sci., Part A: Polym. Chem., 2007, 45, 3380.
4 (a) I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macronald,
M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang,
M. L. Chabinyc, R. J. Kline, M. D. Mcgehee and M. F. Toney,
Nat. Mater., 2006, 5, 328; (b) Y. M. Kim, E. Lim, I.-N. Kang,
B.-J. Jung, J. Lee, B. W. Koo, L.-M. Do and H.-K. Shim,
Macromolecules, 2006, 39, 4081; (c) E. Lim, Y. M. Kim, J.-I. Lee,
B.-J. Jung, N. S. Cho, J. Lee, L.-M. Do and H.-K. Shim, J. Polym.
Sci., Part A: Polym. Chem., 2006, 44, 4709; (d) N. S. Cho,
S. K. Lee, J. H. Seo, M. Elbing, J. D. Azoulay, J. Park, S. Cho,
A. J. Heeger and G. C. Bazan, J. Mater. Chem., 2008, 18, 4909.
5 (a) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger
and G. C. Bazan, Nat. Mater., 2007, 6, 497; (b) D. Muhlbacher,
M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana and
C. Brabec, Adv. Mater., 2006, 18, 2884; (c) S. K. Lee, N. S. Cho,
J. H. Kwak, K. S. Lim, H.-K. Shim, D.-H. Hwang and
C. J. Brabec, Thin Solid Films, 2006, 511–512, 157.
6 (a) J. Peet, E. Broker, Y. H. Xu and G. C. Bazan, Adv. Mater., 2008,
20, 1882; (b) W. C. Tsoi, A. Charas, A. J. Cadby, G. Khalil,
A. M. Adawi, A. Iraqi, B. Hunt, J. Morgado and D. G. Lidzey,
Adv. Funct. Mater., 2008, 18, 600; (c) M. Arif, C. Voltz and
S. Guha, Phys. Rev. Lett., 2006, 96, 025503; (d) G. Ryu, R. Xia and
D. D. C. Bradley, J. Phys.: Condens. Matter, 2007, 19, 056205.
7 (a) M. Grell, D. D. C. Bradley, G. Ungar, J. Hill and K. S. Whitehead,
Macromolecules, 1999, 32, 5810; (b) S. H. Chen, A. C. Su and
S. A. Chen, J. Phys. Chem. B, 2005, 109, 10067; (c) M. Ariu,
M. Sims, M. D. Rahn, J. Hill, A. M. Fox and D. G. Lidzey, Phys.
Rev. B, 2003, 67, 195333.
8 (a) M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain,
M. Inbasekaran, E. P. Woo and M. Soliman, Acta Polym., 1998,
49, 439; (b) D. D. C. Bradley, M. Grell, X. Long, H. Mellor and
A. Grice, Proc. SPIE–Int. Soc. Opt. Eng., 1997, 3145, 254.
9 (a) W. Chunwaschirasiri, B. Tanto, D. L. Huber and M. J. Winokur,
Phys. Rev. Lett., 2005, 94, 107402; (b) A. L. T. Khan, M. J. Banach
General procedure for the synthesis of polymers with the Suzuki
reaction. The synthesis of F8R5 is presented in detail as a
representative example. 2,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxa-
borolan-2-yl)-9,90-di-n-octylfluorene (0.450 g, 0.70 mmol),
2,7-dibromo-9,90-di-n-octylfluorene (0.384 g, 0.6993 mmol), 2-
{2,6-bis[2-(7-bromo-10-hexyl-10H-phenothiazin-3-yl)vinyl]pyran-
4-ylidene}malononitrile (0.64 mg, 0.0007 mmol), and
palladium(II) acetate (0.014 mmol, 9.2 mg) were dissolved in
8 mL of anhydrous toluene. To the solution, tetraethylammo-
nium hydroxide solution (2.27 g) degassed using a sonicator was
added under argon flow. After further stirring and heating for
1 hr, an excess of bromobenzene (11 mg, 0.07 mmol) dissolved in
1 mL of anhydrous toluene was added as an end capper. After
5 hr, an excess of phenylboronic acid (9 mg, 0.07 mmol) dissolved
in 3 mL of anhydrous toluene was added. After further stirring
and heating for 2 hr, the reaction mixture was cooled to about
50 ꢁC and added slowly to a vigorously stirred mixture consisting
of 230 mL methanol and 13 mL 1 N aqueous HCl. The polymer
fibers were collected by filtration and reprecipitation from
methanol. The polymer was purified by washing for 2 days in
a soxhlet apparatus with acetone to remove oligomers and
catalyst residues, and column chromatographed with a chloro-
form/toluene solution of the polymer. The reprecipitation
procedure in toluene/methanol was then repeated several times.
The final product was obtained after drying in vacuo at 40 ꢁC. 1H
NMR (400 MHz, CD2Cl2) d (ppm): 7.88–7.75 (b, 2H), 7.75–7.56
(b, 4H), 2.28–1.81 (b, 4H), 1.28–0.97 (b, 20H), 0.97–0.60
(b, 10H). Anal. Calcd: C, 89.62; H, 10.37; N, 0.0037; S, 0.0042.
Found: C, 89.61; H, 10.36; N, 0.010%.
F8R8 was synthesized with the procedure described for F8R5.
The copolymerization of the monomers 2,7-bis(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)-9,90-di-n-octylfluorene (0.450 g,
0.7 mmol), 2,7-dibromo-9,90-di-n-octylfluorene (0.383 g,
0.6989 mmol) and 3 (1.0 mg, 0.0011 mmol) gave F8R8 (65%). 1H
NMR (400 MHz, CD2Cl2) d (ppm): 7.88–7.75 (b, 2H), 7.75–7.56
(b, 4H), 2.28–1.81 (b, 4H), 1.28–0.97 (b, 20H), 0.97–0.60
(b, 10H). Anal. Calcd: C, 89.62; H, 10.37; N, 0.0059; S, 0.0068.
Found: C, 89.61; H, 10.36; N, 0.011%.
€
and A. Kohler, Synth. Met., 2003, 139, 905.
10 (a) S. Kawana, M. Durrell, J. Lu, J. E. Macdonald, M. Grell,
D. D. C. Bradley, P. C. Jukes, R. A. L. Jones and S. L. Bennett,
Polymer, 2002, 43, 1907; (b) P. Blondin, J. Bouchard, S. Beaupre,
M. Belletete, G. Durocher and M. Leclerc, Macromolecules, 2000,
33, 5874.
F8R10 was synthesized with the procedure described for
F8R5. The copolymerization of the monomers 2,7-bis(4,4,5,
5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,90-di-n-octylfluorene
(0.450 g, 0.7 mmol), 2,7-dibromo-9,90-di-n-octylfluorene (0.383
g, 0.6986 mmol) and 3 (1.3 mg, 0.0014 mmol) gave F8R10 (68%).
1H NMR (400 MHz, CD2Cl2) d (ppm): 7.88–7.75 (b, 2H),
7.75–7.56 (b, 4H), 2.28–1.81 (b, 4H), 1.28–0.97 (b, 20H),
11 (a) S. H. Chen, A. C. Su, C. H. Su and S. A. Chen, Macromolecules,
2005, 38, 379; (b) A. L. T. Khan, P. Sreearunothai, L. M. Herz,
€
M. J. Banach and A. Kohler, Phys. Rev. B, 2004, 69, 085201; (c)
M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain,
M. Inbasekaran, E. P. Woo and M. Soliman, Acta Polym., 1998,
49, 439.
7068 | J. Mater. Chem., 2009, 19, 7062–7069
This journal is ª The Royal Society of Chemistry 2009