Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
reaction conditions. Another alternative would be C–C bond
formation through an outer sphere radical rebound mechanism to
form the C–C bond (Figure S7). This mechanism avoids forming an
iron(IV) intermediate, but the radical rebound step would be the
selectivity determining step of the reaction if this mechanism were
operative. We disfavour such a step as the selectivity determining
step because it is very similar to the microscopic reverse of halogen
atom abstraction, which is an unselective event. Instead, we favour
the bimetallic mechanism shown in Figure 3 that resembles similar
mechanisms previously proposed for cross coupling reactions
catalysed by iron34a-b and nickel24,28 complexes.
Notes and references
DOI: 10.1039/D0CC05003B
1)Fürstner, A.; Leitner, A. Angew. Chem. Int. Ed. 2002, 41, 609.
2)(a) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002,
124, 13856. (b) Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766. (c)
Tewari, N.; Maheshwari, N.; Medhane, R.; Nizar, H.; Prasad, M. Org. Process
Res. Dev. 2012, 16, 1566.
3)Tindall, D. J.; Krause, H.; Fürstner, A. Adv. Synth. Catal. 2016, 358, 2398.
4)(a) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004,
126, 3686. (b) Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.;
Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H.
Angew. Chem. Int. Ed. 2014, 53, 1804. (c) Bedford, R. B.; Bruce, D. W.; Frost,
R. M.; Hird, M. Chem. Commun. 2005, 33, 4161.
CN
5)(a) Bedford, R. B.; Carter, E.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.;
Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J. Angew. Chem. Int. Ed.
2013, 52, 1285. (b) Hatakeyama, T.; Nakagawa, N.; Nakamura, M. Org. Lett.
2009, 11, 4496.
6)(a) Nakamura, M.; Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.;
Seike, H.; Takaya, H.; Tamada, Y.; Ono, T. J. Am. Chem. Soc. 2010, 132,
10674. (b) Agata, R.; Lu, S.; Matsuda, H.; Isozaki, K.; Nakamura, M. Org.
Biomol. Chem. 2020, 18, 3022. (c) Bedford, R. B.; Brenner, P. B.; Carter, E.;
Carvell, T. W.; Cogswell, P. M.; Gallagher, T.; Harvey, J. N.; Murphy, D. M.;
Neeve, E. C.; Nunn, J.; et al. Chem. Eur. J. 2014, 20, 7935. (d) Hatakeyama,
T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.;
Nakamura, M. Angew. Chem. Int. Ed. 2012, 51, 8834. (e) Li, B.; Byers, J. A.
Org. Lett. 2018, 20, 5233.
7)Crockett, P. M.; Wong, S. A.; Li, B.; Byers, A. B. Angew. Chem. Int. Ed. 2020,
132, 5430.
8)Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
9)(a) Jin, M.; Adak, L.; Nakamura, M. J. Am. Chem. Soc. 2015, 137, 7128. (b)
Iwamoto, T.; Okuzono, C.; Adak, L.; Jin, M.; Nakamura, M. Chem. Commun.
2019, 55, 1128. (c) Liu, L.; Lee, W.; Yuan, M.; Acha, C.; Geherty, M. B.;
Williams, B.; Gutierrez, O. Chem. Sci., 2020, 11, 3146.
O
O
2
N
N
Ar’-B(pin)
Fe
Ph
Ph
Ar
LiNR2
O
NR2
CN
II
CN
X
O
O
O
R
N
N
N
N
Fe
Ph
Ph
Fe
Ph
Ph
unselective
Ar
X
Ar’
IV
CN
I
O
O
R
N
N
selective
Fe
Ph
Ph
R2N
X
CN
CN
+
III
O
H
O
O
O
N
N
N
N
Fe
Fe
Ph
L
Ph
Ph
Ph
Ar’
L
L = solvent, LiNR2, 1,3,5-TMB
CN
Ar
R
VII
V
O
O
N
N
selective
R
Ar
H
Fe
Ph
Ph
L
Ar’
Ar’
H
Ar
R
VI
10) Ameen, D.; Snape, T. J. Medchemcomm 2013, 4, 893.
Figure 3. Proposed catalytic cycle for the Suzuki-Miyaura cross-coupling
between benzylic halides and arylboronic pinacol esters catalysed by
iron-cyanobis(oxazoline) complexes.
11) Devalia, J. L.; Hanotte, F.; Baltes, E.; De Vos, C. A. Allergy Eur. J. Allergy
Clin. Immunol. 2001, 56, 50.
12) Górecki, M.; Zullo, V.; Iuliano, A.; Pescitelli, G. Pharm. 2019, 12, 1.
13) Li, J. J., Johnson, D. S., Sliskovic, D. R., Roth, B. D. Contemporary Drug
Synthesis; John Wiley & Sons. Inc, 2004; Vol. 11.
Conclusion
The first enantioselective Suzuki-Miyaura reaction used to 14) Jia, T.; Cao, P.; Liao, J. Chem. Sci. 2018, 9, 546.
15) Chen, J.; Chen, C.; Ji, C.; Lu, Z. Org. Lett. 2016, 18, 1594.
16) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Angew. Chem. Int. Ed. 2019, 58,
3198.
17) Yonova, I. M.; Johnson, A. G.; Osborne, C. A.; Moore, C. E., Morrissette,
N. S., Jarvo, E. R. Angew. Chem. Int. Ed. 2014, 53, 2422.
18) (a) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S.
E. J. Am. Chem. Soc., 2017, 139, 5684. (b) Do, H. Q.; Chandrashekar, E. R. R.;
Fu, G. C. J. Am. Chem. Soc. 2013, 135, 16288.
19) Suzuki, A.; Miyaura, N.; Yamada, K. Tetrahedron Lett. 1979, 36, 3437.
20) DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751.
21) Changying, L Yiliang, L Weiren, X Yuli, W Guilong, Z Yongheng, S Lida, T
Meixang, Z. CN104860793 (A), 2014.
22) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc.
2017, 139, 2904.
synthesize enantioenriched 1,1-diarylalkanes was developed. The
method relies on an iron-based catalyst that proceeds through a
stereoconvergent cross-coupling mechanism between racemic
benzylic chlorides and unactivated aryl boronic esters. The anionic
cyano(bisoxazoline) ligand and 1,3,5-TMB additive employed were
important to extend catalyst lifetime so that high yields could be
obtained. In addition to being the first catalyst reported for this
transformation, the iron-based catalyst demonstrates reactivity that
expands the substrate scope compared to existing nickel-based
catalysts that have previously been developed.18a,18b Most notably
were the high selectivities observed for cross-coupling reactions
involving challenging ortho-substituted diarylalkane substrates.
Perhaps more importantly, the method expands the classes of
electrophiles that can engage in enantioselective cross coupling
reactions effected by iron-based cross-coupling catalysts.
23) (a) Sharma, A. K.; Sameera, W. M. C.; Jin, M.; Adak, L.; Okuzono, C.;
Iwamoto, T.; Kato, M.; Nakamura, M.; Morokuma, K. J. Am. Chem. Soc.
2017, 139, 16117. (b) Lee, W.; Zhou, J.; Gutierrez, O. J. Am. Chem. Soc. 2017,
139, 16126.
24) Yin, H.; Fu, G. C. J. Am. Chem. Soc. 2019, 141, 15433.
25) Puchot, C.; Agami, C.; Samuel, O.; Dunach, E.; Zhao, S.; Kagan, H. B. J. Am.
Chem. Soc. 1986, 108, 2353.
26) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers,
G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem.
Soc. 2006, 128, 756.
Conflicts of interest
There are not conflicts to declare.
27) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C.
J. Am. Chem. Soc. 2015, 137, 4896.
28) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
Acknowledgments
Acknowledgment is made to the Donors of the American Chemical
Society Petroleum Research Fund for support of this research.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins