activity among the porphyrins tested. This catalyst can
catalyze CO oxidation at low overpotentials (less than 0.1 V vs.
RHE, at 60 1C). This result means that CO is electrochemically
oxidized by this catalyst when a slight overpotential is applied
under PEMFC operation. This situation is in marked contrast
to that with Pt-based catalysts, which require a large over-
potential for CO oxidation. The catalyst shows high selectivity
toward CO compared to H2. The lack of H2 oxidation activity
indicates that this catalyst should be combined with a Pt
catalyst, which can strongly oxidize H2. The optimal combina-
tion of these two catalysts should be examined further for use
in fuel cell applications.
5 N. Bion, F. Epron, M. Moreno, F. Marino and D. Duprez, Top.
Catal., 2008, 51, 76–88.
6 H. Uchida, K. Izumi, K. Aoki and M. Watanabe, Phys. Chem.
Chem. Phys., 2009, 11, 1771–1779.
7 H. A. Gasteiger, N. M. Markovic and P. N. Ross, J. Phys.
Chem., 1995, 99, 8290–8301.
8 H. A. Gasteiger, N. M. Markovic and P. N. Ross, J. Phys. Chem.,
1995, 99, 16757–16767.
9 M. Arenz, V. Stamenkovic, B. B. Blizanac, K. J. Mayrhofer,
N. M. Markovic and P. N. Ross, J. Catal., 2005, 232, 402–410.
10 S. Ball, A. Hodgkinson, G. Hoogers, S. Maniguet, D. Thompsett
and B. Wong, Electrochem. Solid-State Lett., 2002, 5, A31–A34.
11 T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara and Y. Miyazaki,
J. Electrochem. Soc., 2003, 150, A1225–A1230.
12 T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi
and K. Eguchi, J. Power Sources, 2006, 155, 152–156.
13 S. Yamazaki, Y. Yamada and K. Yasuda, Inorg. Chem., 2005, 44,
6512–6514.
14 S. Yamazaki, T. Ioroi, Y. Yamada, K. Yasuda and T. Kobayashi,
Angew. Chem., Int. Ed., 2006, 45, 3120–3122.
15 F. Bedioui, S. Griveau, T. Nyokong, A. J. Appleby, C. A. Caro,
M. Gulppi, G. Ochoa and J. H. Zagal, Phys. Chem. Chem. Phys.,
2007, 9, 3383–3396.
We also found that the p-substituents on the meso-phenyl
groups dramatically influenced CO oxidation activity. The
effects of the substituents on the meso-phenyl group were
discussed in terms of a proposed reaction mechanism of CO
activation. No clear relationship was observed between the
activity and the electronic or steric properties of p-substituents.
The CO coordination process and the CO complex of Rh
porphyrin were not significantly different among the Rh
porphyrins tested. These results strongly suggest that the differ-
ences in activity can be attributed not to the intrinsic properties
of a single porphyrin molecule, but rather to porphyrin–
carbon interactions. The substituents that are associated with
high CO oxidation activity contain an O atom, and this can
promote the formation of hydrogen bonds with functional
groups on the carbon surface. The increased interaction due
to this bond formation may be responsible for the high activity.
16 J. H. Zagal, M. A. Gulppi and G. Cardenas-Jiron, Polyhedron,
´ ´
2000, 19, 2255–2260.
17 S. Yamazaki, Y. Yamada, N. Fujiwara, T. Ioroi, Z. Siroma,
H. Senoh and K. Yasuda, J. Electroanal. Chem., 2007, 602,
96–102.
18 G. M. Sheldrick, SHELXTL. version 6.12, Bruker AXS, Madison,
Wisconsin, USA, 2000.
19 J. Wu and C. P. Kubiak, J. Am. Chem. Soc., 1983, 105,
7456–7457.
20 J. F. van Baar, J. A. R. van Veen and N. de Wit, Electrochim. Acta,
1982, 27, 57–59.
21 J. F. van Baar, J. A. R. van Veen, J. M. van der Eijk, Th. J. Peters
and N. de Wit, Electrochim. Acta, 1982, 27, 1315–1319.
22 J. A. R. van Veen, J. F. van Baar and K. J. Kroese, J. Chem. Soc.,
Faraday Trans. 1, 1981, 77, 2827–2843.
23 E. B. Fleischer, R. Thorp and D. Venerable, J. Chem. Soc. D, 1969,
475a.
Acknowledgements
The authors would like to express sincere gratitude to
Ms M. Ichimura for her kind support and technical assistance.
They would also like to thank Dr M. Yao for fruitful discussions.
They are grateful to the researchers from the Technical Service
Center (AIST) for elemental analysis. This study was supported
by the New Energy and Industrial Technology Development
Organization (NEDO) of Japan.
24 M. Matsu-ura, F. Tani and Y. Naruta, J. Am. Chem. Soc., 2002,
124, 1941–1950.
25 T. Sato, K. Kunimatsu, H. Uchida and M. Watanabe, Electrochim.
Acta, 2007, 53, 1265–1278.
´
26 F. Maillard, A. Bonnefont, M. Chatenet, L. Guetaz, B. Doisneau-
Cottignies, H. Roussel and U. Stimming, Electrochim. Acta, 2007,
53, 811–822.
27 I. A. Cohen and B. C. Chow, Inorg. Chem., 1974, 13, 488–489.
28 C. Shi and F. C. Anson, Inorg. Chem., 2001, 40, 5829–5833.
29 A. B. P. Lever, J. Porphyrins Phthalocyanines, 1999, 3, 488–499.
30 A. B. P. Lever, Inorg. Chim. Acta, 1993, 203, 171–174.
31 S. Yamazaki, Z. Siroma, T. Ioroi, K. Yasuda and K. Tanimoto,
J. Electroanal. Chem., 2008, 616, 64–70.
References
1 R. A. Lemons, J. Power Sources, 1990, 29, 251–264.
2 H. Igarashi, T. Fujino and M. Watanabe, J. Electroanal. Chem.,
1995, 391, 119.
32 E. Fuente, J. A. Menendez, M. A. Dıez, D. Suarez and
´ ´ ´
M. A. Montes-Moran, J. Phys. Chem. B, 2003, 107, 6350–6359.
´
3 M. Gotz and H. Wendt, Electrochim. Acta, 1998, 43, 3637–3644.
4 Y. Lei, N. W. Cant and D. L. Trimm, J. Catal., 2006, 239,
227–236.
¨
33 H. P. Boehm, Carbon, 2002, 40, 145–149.
34 H. P. Boehm, E. Diehl, W. Heck and R. Sappok, Angew. Chem.,
Int. Ed. Engl., 1964, 3, 669–678.
ꢁc
This journal is the Owner Societies 2010
8976 | Phys. Chem. Chem. Phys., 2010, 12, 8968–8976