Article
Urolithins C and D, the first products of bacterial transforma-
J. Agric. Food Chem., Vol. 57, No. 21, 2009 10185
human plasma and some persist in urine for up to 48 h. J. Nutr. 2006,
136, 2481–2485.
tions, are present in significant concentrations in the intestines.
The urolithins are present in plasma at trace concentrations
because of enteropathic circulation (17). However, they can still
provide health beneficial effects resulting form their extremely
high antioxidant potency (Table 1). Urolithin A is the major
metabolite of ellagitannins present in plasma, urine, tissues, and
digestive tract (4,6,17). Inthe present study, urolithin A exhibited
a relatively weak antioxidant activity compared to its precursors,
that is, punicalagins and ellagic acid (Table 1). Despite this, the
antioxidant IC50 value of 13 μM is still in the range of the plasma
concentrations of urolithin A, that is, 4-18 μM (23, 24). This
compound remains in systemic circulation for up to 72 h (14), and
although urolithin A is the major metabolite, urolithins C and D
with their much superior antioxidant capacity will, no doubt, also
contribute to the total antioxidant potency. Hence, the regular
consumption of pomegranate products should maintain an
efficient concentration of urolithins in the systemic circulation
to provide protection against oxidative stress. Urolithin B, the
final product of ellagitannin microbial transformation is present
in significant amounts in plasma and urine (14), but it did not
exhibit any antioxidant properties (Table 1). However, other
health protective properties, including anticarcinogenic and an-
ticancer activities, were demonstrated for this molecule (25). It is
also important that the urolithins did not exhibit toxicity against
mammalian cells at concentrations up to 31.25 μg/mL (Table 1).
In conclusion, urolithins, the bioavailable products of the
intestinal microbial transformation of pomegranate ellagitannins
may account for systemic antioxidant effects and protection
against oxidative stress. In addition, the original ellagitannins
as well as some of the urolithins retained in the gut may also
provide potential local gastrointestinal tract beneficial effects.
(7) Seeram, N. P.; Lee, R.; Heber, D. Bioavailability of ellagic acid in
human plasma after consumption of ellagitannins from pomegra-
nate (Punica granatum L.) juice. Clin. Chim. Acta 2004, 348, 63–68.
(8) Larrosa, M.; Tomas-Barberan, F. A.; Espin, J. C. The hydrolysable
tannin punicalagin releases ellagic acid which induces apoptosis in
human colon adenocarcinoma Caco-2 cells by using the mitochon-
drial pathway. J. Nutr. Biochem. 2006, 17, 611–625.
(9) Gibson, G. R. Prebiotics as gut microflora management tools.
J. Clin. Gastroenterol. 2008, 42, S75–9.
(10) Rastall, R. A.; Gibson, G. R.; Gill, H. S.; Guarner, F.; Klaenhammer,
T. R.; Pot, B.; Reid, G.; Rowland, I. R.; Sanders, M. E. Modulation of
the microbial ecology of the human colon by probiotics, prebiotics
and synbiotics to enhance human health: an overview of enabling
science and potential applications. FEMS Microbiol. Ecol. 2005, 52,
145–152.
(11) Onoue, M.; Kado, S.; Sakaitani, Y.; Uchida, K.; Morotomi, M.
Specific species of intestinal bacteria influence the induction of
aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett.
1997, 113, 179–186.
(12) Lee, H. C.; Jenner, A. M.; Low, C. S.; Lee, Y. K. Effect of tea
phenolics and their aromatic fecal bacterial metabolites on intestinal
microbiota. Res. Microbiol. 2006, 157, 876–884.
(13) Setchell, K. D. R.; Clerici, C.; Lephart, E. D.; Cole, S. J.; Heenan, C.;
Castellani, D.; Wolfe, B. E.; Nechemias-Zimmer, L.; Brown, N. M.;
Lund, T. D.; Handa, R. J.; Heubi, J. E. (S)-Equol, a potent ligand for
estrogen receptor ss, is the exclusive enantiomeric form of the soy
isoflavone metabolite produced by human intestinal bacterial flora.
Am. J. Clin. Nutr. 2005, 81, 1072–1079.
(14) Larrosa, M.; Gonzalez-Sarrias, A.; Garcia-Conesa, M. T.; Tomas-
Barberan, F. A.; Espin, J. C. Urolithins, ellagic acid-derived meta-
bolites produced by human colonic microflora, exhibit estrogenic
and antiestrogenic activities. J. Agric. Food Chem. 2006, 54, 1611–
1620.
(15) Cerda, B.; Espin, J. C.; Parra, S.; Martinez, P.; Tomas-Barberan, F.
A. The potent in vitro antioxidant ellagitannins from pomegranate
juice are metabolised into bioavailable but poor antioxidant hydro-
xyl-6H-dibezopyran-6-one derivatives by the colonic microflora of
healthy humans. Eur. J. Nutr. 2004, 43, 205–220.
(16) Ito, H.; Iguchi, A.; Hatano, T. Identification of urinary and intestinal
bacterial metabolites of ellagitannin geraniin in rats. J. Agric. Food
Chem. 2008, 56, 393–400.
ACKNOWLEDGMENT
We thank POM Wonderful, Los Angeles, for financial sup-
port. United States Department of Agriculture (USDA), agricul-
tural research service specific cooperative agreement, No. 58-
6408-2-0009, is also acknowledged for partial support of the
work. We also thank Katherine Martin for her excellent technical
support.
(17) Espin, J. C.; Gonzalez-Barrio, R.; Cerda, B.; Lopez-Bote, C.; Rey, A.
I.; Tomas-Barberan, F. A. Iberian Pig as a model to clarify obscure
points in the bioavailability and metabolism of ellagitannins in
humans. J. Agric. Food Chem. 2007, 55, 10476–10485.
LITERATURE CITED
(18) Ghosal, S.; Lal, J.; Singh, S. K.; Kumar, Y.; Shilajit, F. S. Chemistry
of two bioactive benzopyrones. J. Chem. Res., Synop. 1989, 11, 350–
351.
(1) Seeram, N. P.; Schulman, R. N.; Heber, D. Pomegranates. Ancient
Roots to Modern Medicine; Taylor & Francis: Boca Raton, FL,
London, NY, 2006.
(19) Choi, Y.-W.; Takamatsu, S.; Khan, S. I.; Srinivas, P. V.; Ferreira,
D.; Zhao, J. Schisandrene, a dibenzocyclooctadien lignan from
Schisandra chinesis: structure-activity relationships of dibenzocy-
clooctadiene lignans. J. Nat. Prod. 2006, 69, 356–359.
(2) Gil, M. I.; Tomas-Barberan, F. A.; Hess-Pierce, B.; Holcroft, D. M.;
Kader, A. A. Antioxidant activity of pomegranate juice and its
relationship with phenolic composition and processing. J. Agric.
Food Chem. 2000, 48, 4581–4589.
(20) Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative
stress phenomena, antioxidants, redox reactions, and methods for
their quantification. Toxicol. Pathol. 2002, 30, 620–650.
(21) Osawa, T.; Namiki, M.; Kawakishi, S. Role of dietary antioxidants
in protection against oxidative stress damage. Basic Life Sci. 1990,
52, 139–153.
(3) Seeram, N. P.; Adams, L. S.; Henning, S. M.; Niu, Y.; Zhang, Y.;
Nair, M. G.; Heber, D. In vitro antiproliferative, apoptotic and
antioxidant activities of punicalagin, ellagic acid and a total pome-
granate tannin extract are enhanced in combination with other
polyphenols as found in pomegranate juice. J. Nutr. Biochem.
2005, 16, 360–367.
(22) Porter, W. L.; Recent trends in food applications of antioxidants. In
Autoxidation in Food and Biological systems; Simi, M. G., Karel, M.,
Eds; Plenum Press: New York, 1980; pp 45-59.
(23) Seeram, N. P.; Aronson, W. J.; Zhang, Y.; Henning, S. M.; Moro, A.;
Lee, R.-P.; Sartippour, M.; Harris, D. M.; Retting, M.; Suchard, M.
A.; Pantuck, A. J.; Belldegrun, A.; Heber, D. Pomegranate ellagi-
tannins derived metabolites inhibit prostate cancer growth and
localize to mouse prostate gland. J. Agric. Food Chem. 2007, 55,
7732–7737.
(4) Mertens-Talcott, S. U.; Jilma-Stohlawetz, P.; Rios, J.; Hingorani, L.;
Derendorf, H. Absorption, metabolism, and antioxidant effects of
pomegranate (Punica granatum L.) polyphenols after ingestion of a
standardized extract in healthy human volunteers. J. Agric. Food
Chem. 2006, 54, 8956–8961.
(5) Reddy, M. K.; Gupta, S. K.; Jacob, M. R.; Khan, S. I.; Ferreira, D.
Antioxidant, antimalarial and antimicrobial activities of tannin-rich
fractions, ellagitannins and phenolic acids from Punica granatum L.
Planta Med. 2007, 73, 461–467.
(24) Seeram, N. P.; Zhang, Y.; McKeever, R.; Henning, S. M.; Lee, R.;
Suchard, M. A.; Li, Z.; Chen, S.; Thames, G.; Zerlin, A.; Nguyen,
(6) Seeram, N. P.; Henning, S. M.; Zhang, Y.; Suchard, M.; Li, Z.;
Heber, D. Pomegranate juice ellagitannin metabolites are present in