Improving the Catalytic Activity of Au25 Nanocluster by Peeling and Doping
capping two contrapositioned Au3 faces on surface of
2016, 34, 589.
[13] Jin, R. Nanoscale 2015, 7, 1549.
the Au13 icosahedron. Importantly, it is found that
Au26Cd5 is promising as a catalyst for the A3-coupling
reaction due to its high activity and substrate tolerance
as well as good recyclability, although Au25 exhibits no
catalytic activity under the investigated conditions. The
cooperation of the exerted cadmium atoms and the
neighbor gold atoms may be responsible for the unusual
high catalytic activity of Au26Cd5 at room temperature.
It is expected that our work will trigger more research
on the subtle tuning of nanoclusters’ compositions and
structures to improve their performances by some unu-
sual and effective strategies.
[14] Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang,
D.-E.; Xie, J. J. Am. Chem. Soc. 2014, 136, 1246.
[15] Zhang, X.-D.; Luo, Z.; Chen, J.; Shen, X.; Song, S.; Sun, Y.; Fan, S.;
Fan, F.; Leong, D. T.; Xie, J. Adv. Mater. 2014, 26, 4565.
[16] Wang, S.; Yu, H.; Zhu, M. Sci. China, Chem. 2016, 59, 206.
[17] Pei, X. L.; Yang, Y.; Lei, Z.; Wang, Q.-M. J. Am. Chem. Soc. 2013,
135, 6435.
[18] Yang, H.; Wang, Y.; Lei, J.; Shi, L.; Wu, X.; Mäkinen, V.; Lin, S.;
Tang, Z.; He, J.; Häkkinen, H.; Zheng, L.; Zheng, N. J. Am. Chem.
Soc. 2013, 135, 9568.
[19] Li, M.-B.; Tian, S.-K.; Wu, Z. Nanoscale 2014, 6, 5714.
[20] Li, M.-B.; Tian, S.-K.; Wu, Z.; Jin, R. Chem. Commun. 2015, 51,
4433.
[21] Liu, C.; Abroshan, H.; Yan, C.; Li, G.; Haruta, M. ACS Catal. 2016,
6, 92.
[22] Fang, J.; Zhang, B.; Yao, Q.; Yang, Y.; Xie, J.; Yan, N. Coord. Chem.
Rev. 2016, 322, 1.
[23] Chen, Y.; Liu, C.; Abroshan, H.; Li, Z.; Wang, J.; Li, G.; Haruta, M.
J. Catal. 2016, 340, 287.
[24] Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T.
ACS Catal. 2012, 2, 1519.
[25] Yao, C.; Chen, J.; Li, M.-B.; Liu, L.; Yang, J.; Wu, Z. Nano Lett.
2015, 15, 1281.
[26] Li, M.-B.; Tian, S.-K.; Wu, Z.; Jin, R. Chem. Mater. 2016, 28, 1022.
[27] Wu, Z. Angew. Chem., Int. Ed. 2012, 51, 2934.
[28] Tian, S.; Yao, C.; Liao, L.; Xia, N.; Wu, Z. Chem. Commun. 2015,
51, 11773.
[29] Yao, C.; Lin, Y.-J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-H.; Yang, J.;
Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350.
[30] Wu, Z.; Suhan, J.; Jin, R. J. Mater. Chem. 2009, 19, 622.
[31] Wu, Z.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. J. Am. Chem.
Soc. 2011, 133, 9670.
Acknowledgement
This work was supported by the National Natural
Science Foundation of China (Nos. 21222301,
21501182, 21528303, 21171170), the National Basic
Research Program of China (No. 2013CB934302), the
Ministry of Human Resources and Social Security of
China, the Innovative Program of Development Foun-
dation of Hefei Center for Physical Science and Tech-
nology (No. 2014FXCX002), Hefei Science Center,
CAS (user of potential: 2015HSC-UP003), the
CAS/SAFEA International Partnership Program for
Creative Research Teams, the“Hundred Talents Pro-
gram”of the Chinese Academy of Sciences, and the
Anhui Provincial Natural Science Foundation (No.
1608085QB31).
[32] Menard, L. D.; Gao, S.-P.; Xu, H.; Twesten, R. D.; Harper, A. S.;
Song, Y.; Wang, G.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I.;
Nuzzo, R. G.; Murray, R. W. J. Phys. Chem. B 2006, 110, 12874.
[33] Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am.
Chem. Soc. 2008, 130, 5883.
[34] Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z.
J. Am. Chem. Soc. 2015, 137, 9511.
[35] Zani, L.; Bolm, C. Chem. Commun. 2006, 42, 4263.
[36] Li, C.-J. Acc. Chem. Res. 2010, 43, 581.
[37] Peshkov, V. A.; Pereshivko, O. P.; Eycken, E. V. V. Chem. Soc. Rev.
2012, 41, 3790.
[38] Maity, P.; Tsunoyama, H. T.; Yamauchi, M.; Xie, S.; Tsukuda, T. J.
Am. Chem. Soc. 2011, 133, 20123.
[39] Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. J.
Am. Chem. Soc. 2013, 135, 9450.
[40] Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11347.
[41] Dindulkar, S. D.; Reddy, M. V.; Jeong, Y. T. Catal. Commun. 2012,
17, 114.
References
[1] Schmid, G. Chem. Soc. Rev. 2008, 37, 1909.
[2] Jin, R. Nanoscale 2010, 2, 343.
[3] Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Acc. Chem. Res.
2010, 43, 1289.
[4] Chen, D. H.; Gao, S. P.; Ur Rehman, F.; Jiang, H.; Wang, X. M. Sci.
China, Chem. 2014, 57, 1532.
[5] Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.
[6] Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Acc. Chem. Res. 2012, 45, 1470.
[7] Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Nanoscale 2012, 4,
4027.
[8] Wang, Y.; Cui, Y.; Liu, R.; Gao, F.; Gao, L.; Gao, X. Sci. China,
Chem. 2015, 58, 819.
[9] Li, G.; Jin, R. Acc. Chem. Res. 2013, 46, 1749.
[10] Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014, 47,
816.
[11] Knoppe, S.; Bürgi, T. Acc. Chem. Res. 2014, 47, 1318.
[12] Chen, L.; Zhang, Y.; Jiang, H.; Wang, X.; Liu, C. Chin. J. Chem.
[42] Guthrie, J. P. Can. J. Chem. 1975, 53, 898.
(Zhao, C.)
Chin. J. Chem. 2017, XX, 1—5
© 2017 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
5