7046
K. Sasaki et al. / Tetrahedron Letters 45 (2004) 7043–7047
Table 3. Glycosidations of 1 and several alcohols 2–7
a
b
c
Entry
Alcohol
Conditions
Product
Yield/%
a/b Ratio
1
2
3
4
5
6
2
3
4
5
6
7
A
A
A
B
B
B
8
9
91
95
99
91
77
54
18/82
20/80
13/87
29/71
28/72
42/58
10
11
12
13
a
b
c
Conditions A: C
6
mim[OTf]/C mim[NTf
6
2
] = 7/3, 0ꢁC, 24h. Conditions B: C
6
mim[OTf], 25ꢁC, 1h.
Isolated yields after purification by column chromatography.
a/b Ratios were determined by HPLC analysis (column, CrestPak C18S , 4.6 · 150mm; eluent, 10% H
O in MeCN for entry 3; flow rate, 1.0mL/min, 40ꢁC; detection, UV 250nm).
ꢂ
2
O in MeCN for entries 1, 2, and 4–6, 12.5%
H
2
2 2 3 2
Figure 2. Glycosidations of 1b and 2 using EtOC mim[NTf ] and CNC mim[NTf ].
intermediate more effectively than trifluoromethanesulf-
onimide anion. These results also indicated that the
interaction between the oxonium intermediate and tri-
fluoromethanesulfonimide anion was very weak and
did not affect the stereoselectivity of the glycosidation.
Boons, B. G. Tetrahedron 1996, 52, 1095; (e) Davis, B. G.
J. Chem. Soc., Perkin. Trans. 1 2000, 2137.
. Green Chemistry: Theory and Practice; Anastas, P. T.,
Warner, J. C., Eds.; Oxford University Press: Great
Britain, 1998.
2
3
. (a) Welton, T. Chem. Rev. 1999, 99, 2071; (b) Wasser-
scheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39,
In conclusion, we presented novel glycosidations of glu-
copyranosyl fluoride and alcohols using an ionic liquid
containing a protic acid. Furthermore, although the
stereoselectivity is still not very high, the effect of the
ionic liquids on the stereoselectivity of the glycosidation
was clearly demonstrated. These results should be
instructive for further research that employs ionic
liquids in stereoselective and environmentally benign
glycosidation reactions. Further studies along this line
are currently in progress.
3
772; (c) Sheldon, R. Chem. Commun. 2001, 2399; (d) Ionic
Liquid in Synthesis; Wasserscheid, P., Welton, T., Eds.;
Wiley-VCH: Weinheim, 2002.
4. Sasaki, K.; Nagai, H.; Matsumura, S.; Toshima, K.
Tetrahedron Lett. 2003, 44, 5605.
. Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem.
Soc., Perkin Trans. 1 2002, 2390.
. Poletti, L.; Rencurosi, A.; Lay, L.; Russo, G. Synlett 2003,
2
. For reviews on glycosyl fluoride, see: (a) Shimizu, M.;
Togo, H.; Yokoyama, M. Synthesis 1998, 799; (b)
Toshima, K. Carbohydr. Res. 2000, 327, 15.
5
6
7
297.
8
. For glycosidations of glycosyl fluoride using protic acid,
see: (a) Toshima, K.; Kasumi, K.; Matsumura, S. Synlett
Acknowledgements
1
998, 643; (b) Toshima, K.; Kasumi, K.; Matsumura, S.
Synlett 1999, 813–815; (c) Mukaiyama, T.; Jona, H.;
Takeuchi, K. Chem. Lett. 2000, 696; (d) Jona, H.;
Takeuchi, K.; Mukaiyama, T. Chem. Lett. 2000, 1278;
This research was supported in part by Grant-in-Aid for
the 21st Century COE program ÔKEIO Life Conjugate
ChemistryÕ from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan.
(
e) Jona, H.; Mandai, H.; Mukaiyama, T. Chem. Lett.
001, 426.
. Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506.
0. The synthesis of newly designed ionic liquids will be
2
9
1
1
References and notes
reported elsewhere. CNC mim[NTf ]:
3
H
NMR
2
(
300MHz, neat): d 8.46 (1H, s, N–CH@N), 7.39 (1H, s,
1
. (a) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25,
12; (b) Sina, P. Pure. Appl. Chem. 1991, 63, 519; (c)
Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503; (d)
CH@C), 7.33 (1H, s, CH@C), 4.20 (2H, t, J1,2 = 5.7Hz,
N–CH ), 3.81 (3H, s, N–CH ), 2.43 (2H, t, J = 5.7Hz,
2
2
3
2,3
1
3
CH –CN), 2.17 (2H, tt, J = J2,3 = 5.7Hz, CH2);
2 1,2
C