56
G.A. Flores-Escamilla, J.C. Fierro-Gonzalez / Journal of Molecular Catalysis A: Chemical 359 (2012) 49–56
[8] A. Haynes, P.M. Maitlis, R. Quyoum, C. Pulling, H. Adams, S.E. Spey, R.W. Strange,
particles leads to oxidation of at least part of the surface rhodium atoms to RhI
[33–35]. The oxidation process of surface rhodium atoms by reaction with CO
is similar to that proposed for finely dispersed supported ruthenium clusters
[33,40].
J. Chem. Soc. Dalton Trans. (2002) 2565–2572.
[9] A. Krzywicki, M. Marczewski, J. Mol. Catal. 6 (1979) 431–440.
[10] H.E. Maneck, D. Gutschick, I. Burkhardt, B. Luecke, H. Miessner, U. Wolf, Catal.
Today 3 (1988) 421–429.
[11] E.A. Taylor, G.L. Griffin, J. Phys. Chem. 92 (1988) 477–481.
[12] W.C. Wu, C.C. Chuang, J.L. Lin, J. Phys. Chem. B 104 (2000) 8719–8724.
[13] D.A. Panayotov, S. Burrows, M. Mihaylov, K. Hadjiivanov, B.M. Tissue, J.R. Morris,
Langmuir 26 (2010) 8106–8112.
[33] K.I. Hadjiivanov, G.N. Vayssilov, Adv. Catal. 47 (2002) 307–511.
[34] P. Basu, D. Panayotov, J.T. Yates Jr., J. Phys. Chem. 91 (1987) 3133–3136.
[35] P. Basu, D. Panayotov, J.T. Yates Jr., J. Am. Chem. Soc. 110 (1988) 2074–2081.
[36] J.T. Yates Jr., T.M. Duncan, R.W. Vaughan, J. Chem. Phys. 71 (1979) 3908–
3915.
[14] C.C. Chuang, C.C. Chen, J.L. Lin, J. Phys. Chem. B 103 (1999) 2439–2444.
[15] G. Ramis, G. Busca, V. Lorenzelli, J. Chem. Soc. Faraday Trans. 1 (83) (1987)
1591–1599.
[16] Y. Suda, T. Morimoto, M. Nagao, Langmuir 3 (1987) 99–104.
[17] F. Ouyang, J.N. Kondo, K. Maruya, K. Domen, J. Phys. Chem. B 101 (1997)
4867–4869.
[37] R.R. Cavanagh, J.T. Yates Jr., J. Chem. Phys. 74 (1981) 4150–4151.
[38] A.K. Smith, F. Hugues, A. Theolier, J.M. Basset, R. Ugo, G.M. Zanderighi, J.L. Bilhou,
V. Bilhou-Bougnol, W.F. Graydon, Inorg. Chem. 18 (1979) 3104–3112.
[39] G. Srinivas, S.S.C. Chuang, J. Phys. Chem. 98 (1994) 3024–3031.
[40] S.Y. Chin, C.T. Williams, M.D. Amiridis, J. Phys. Chem. B 110 (2006) 871–882.
[41] O.S. Alexeev, G. Panjabi, B.L. Phillips, B.C. Gates, Langmuir 19 (2003) 9494–
9503.
[18] F. Ouyang, A. Nakayama, K. Tabada, E. Susuki, J. Phys. Chem. B 104 (2000)
2012–2018.
[42] B. Ohtani, Y. Okugawa, S. Nishimoto, T. Kagiya, J. Phys. Chem. 91 (1987)
3550–3555.
[19] G. Busca, P.F. Rossi, V. Lorenzelli, J. Phys. Chem. 89 (1985) 5433–5439.
[20] R.G. Greenler, J. Chem. Phys. 37 (1962) 2094–2100.
[21] A. Badri, C. Binet, J.C. Lavalley, J. Chem. Soc. Faraday Trans. 93 (1997) 1159–1168.
[22] C. Binet, M. Daturi, Catal. Today 70 (2001) 155–167.
[23] G. Busca, Catal. Today 27 (1996) 457–496.
[24] M. Daturi, C. Binet, J.C. Lavalley, A. Galtayries, R. Sporken, Phys. Chem. Chem.
Phys. 1 (1999) 5717–5724.
[25] E. Finocchio, M. Daturi, C. Binet, J.C. Lavalley, G. Blanchard, Catal. Today 52
(1999) 53–63.
[43] H. Knözinger, Angew. Chem. Int. Ed. 7 (1968) 791–805.
[44] R.S. Schiffino, R.P. Merrill, J. Phys. Chem. 97 (1993) 6425–6435.
[45] M. Falk, E. Whalley, J. Chem. Phys. 34 (1961) 1554–1568.
[46] P. Gelin, C. Naccache, Y.B. Taarit, Pure Appl. Chem. 60 (1988) 1315–1320.
[47] A. Gazsi, T. Bánsági, F. Solymosi, Catal. Lett. 131 (2009) 33–41.
[48] Bands attributed to formate species were not observed when the experiment
was done in the presence of flowing methanol, CO and CH3I (Figure 6). This
result could indicate that under those conditions the alcohol reacted prefer-
entially with CO to give the carbonylation product. In absence of CO and CH3I,
some methanol reacted to give formate species.
[26] S. Rousseau, O. Marie, P. Bazin, M. Daturi, S. Verdier, V. Harlé, J. Am. Chem. Soc.
132 (2010) 10832–10841.
[27] E.R. Corey, L.F. Dahl, W. Beck, J. Am. Chem. Soc. 85 (1963) 1202–1203.
[28] J.F. Goellner, B.C. Gates, J. Phys. Chem. B 105 (2001) 3269–3281.
[29] W.A. Weber, B.C. Gates, J. Phys. Chem. B 101 (1997) 10423–10434.
[30] B.E. Hanson, M.E. Davis, D. Taylor, E. Rode, Inorg. Chem. 23 (1984) 52–56.
[31] D.J.C. Yates, J. Phys. Chem. 65 (1961) 746–753.
[49] Because the bands characteristic of surface formate species (1555, 1376 and
1357 cm−1) overlap with those characteristic of the surface acetates (1509 and
1447 cm−1), it was not possible to monitor changes in the intensities of the
bands characteristic of formate species when the CH3I pulses were admitted
to the flow reactor/DRIFT cell.
[32] The existence of RhI(CO)2 species on supported rhodium samples is widely
reported [28,29,33–39]. It has been proposed that bonding of CO with rhodium
[50] J.L. Bronkema, D.C. Leo, A.T. Bell, J. Phys. Chem. C 111 (2007) 14530–14540.