Full Papers
19–32; c) T. Tatsumi, M. Shibagaki, H. Tominaga, J . Mol. Catal. 1981, 13,
331–338.
[12] E. Pedrajas, I. Sorribes, K. Junge, M. Beller, R. Llusar, Green Chem. 2017,
19, 3764–3768.
1
2
3
Keywords: alcohols
catalysis · imines · molybdenum
·
dehydrogenation
·
homogeneous
[13] For recent reviews on catalytic methods for synthesis of imines, see:
a) B. Chen, L. Wang, S. Gao, ACS Catal. 2015, 5, 5851–5876; b) M.
Largeron, Eur. J. Org. Chem. 2013, 5225–5235; c) R. D. Patil, S.
Adimurthy, Asian J. Org. Chem. 2013, 2, 726–744.
4
5
6
7
8
9
[1] a) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712; b) S. Bꢂhn, S.
Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, ChemCatChem 2011,
3, 1853–1864; c) Y. Obora, Y. Ishii, Synlett 2011, 30–51; d) R. Yamaguchi,
K. Fujita, M. Zhu, Heterocycles 2010, 81, 1093–1140; e) G. E. Dobereiner,
R. H. Crabtree, Chem. Rev. 2010, 110, 681–703.
[2] a) C. Santilli, I. S. Makarov, P. Fristrup, R. Madsen, J. Org. Chem. 2016, 81,
9931–9938; b) I. S. Makarov, R. Madsen, J. Org. Chem. 2013, 78, 6593–
6598; c) I. S. Makarov, P. Fristrup, R. Madsen, Chem. Eur. J. 2012, 18,
15683–15692; d) A. Maggi, R. Madsen, Organometallics 2012, 31, 451–
455; e) J. H. Dam, G. Osztrovszky, L. U. Nordstrøm, R. Madsen, Chem. Eur.
J. 2010, 16, 6820–6827.
[3] a) E. P. K. Olsen, T. Singh, P. Harris, P. G. Andersson, R. Madsen, J. Am.
Chem. Soc. 2015, 137, 834–842; b) E. P. K. Olsen, R. Madsen, Chem. Eur. J.
2012, 18, 16023–16029.
[4] a) G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko, Chem. Soc.
Rev. 2018, 47, 1459–1483; b) F. Kallmeier, R. Kempe, Angew. Chem. Int.
Ed. 2018, 57, 46–60; Angew. Chem. 2018, 130, 48–63; c) B. Maji, M. K.
Barman, Synthesis 2017, 49, 3377–3393.
[5] For recent examples, see: a) S. Parua, R. Sikari, S. Sinha, S. Das, G.
Chakraborty, N. D. Paul, Org. Biomol. Chem. 2018, 16, 274–284; b) D.-W.
Tan, H.-X. Li, D.-L. Zhu, H.-Y. Li, D. J. Young, J.-L. Yao, J.-P. Lang, Org. Lett.
2018, 20, 608–611; c) M. Vellakkaran, K. Singh, D. Banerjee, ACS Catal.
2017, 7, 8152–8158; d) T. T. Dang, A. M. Seayad, Chem. Asian J. 2017, 12,
2383–2387; e) Z. Dai, Q. Luo, H. Jiang, Q. Luo, H. Li, J. Zhang, T. Peng,
Catal. Sci. Technol. 2017, 7, 2506–2511; f) D.-W. Tan, H.-X. Li, M.-J. Zhang,
J.-L. Yao, J.-P. Lang, ChemCatChem 2017, 9, 1113–1118.
[6] Heterogeneous molybdenum sulfide and carbide catalysts have been
shown to perform dehydrogenation of mostly primary alcohols, see:
a) L. R. McCullough, D. J. Childers, R. A. Watson, B. A. Kilos, D. G. Barton,
E. Weitz, H. H. Kung, J. M. Notestein, ACS Sustainable Chem. Eng. 2017,
5, 4890–4896; b) Y. Leng, J. Li, C. Zhang, P. Jiang, Y. Li, Y. Jiang, S. Du, J.
Mater. Chem. A 2017, 5, 17580–17588; c) Z. Li, C. Chen, E. Zhan, N. Ta, Y.
Li, W. Shen, Chem. Commun. 2014, 50, 4469–4471.
[14] a) T. Higuchi, R. Tagawa, A. Iimuro, S. Akiyama, H. Nagae, K. Mashima,
Chem. Eur. J. 2017, 23, 12795–12804; b) M. Mastalir, M. Glatz, N. Gorgas,
B. Stçger, E. Pittenauer, G. Allmaier, L. F. Veiros, K. Kirchner, Chem. Eur. J.
2016, 22, 12316–12320; c) A. Mukherjee, A. Nerush, G. Leitus, L. J. W.
Shimon, Y. Ben David, N. A. E. Jalapa, D. Milstein, J. Am. Chem. Soc.
2016, 138, 4298–4301; d) B. Saha, S. M. W. Rahaman, P. Daw, G.
Sengupta, J. K. Bera, Chem. Eur. J. 2014, 20, 6542–6551; e) G. Zhang,
S. K. Hanson, Org. Lett. 2013, 15, 650–653; f) M. A. Esteruelas, N.
Honczek, M. Olivꢃn, E. OÇate, M. Valencia, Organometallics 2011, 30,
2468–2471; g) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem.
Int. Ed. 2010, 49, 1468–1471; Angew. Chem. 2010, 122, 1510–1513.
[15] P. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp, T.
Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061–6071.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[16] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman,
B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–
2179.
[17] S. Jali, H. B. Friedrich, G. R. Julius, J. Mol. Catal. A 2011, 348, 63–69.
[18] I. Thomꢄ, A. Nijs, C. Bolm, Chem. Soc. Rev. 2012, 41, 979–987.
[19] a) C. Santilli, S. S. Beigbaghlou, A. Ahlburg, G. Antonacci, P. Fristrup, P.-
O. Norrby, R. Madsen, Eur. J. Org. Chem. 2017, 5269–5274; b) R. B.
Bedford, M. Nakamura, N. J. Gower, M. F. Haddow, M. A. Hall, M. Huwe,
T. Hashimoto, R. A. Okopie, Tetrahedron Lett. 2009, 50, 6110–6111; c) S. L.
Buchwald, C. Bolm, Angew. Chem. Int. Ed. 2009, 48, 5586–5587; Angew.
Chem. 2009, 121, 5694–5695; d) H. Plenio, Angew. Chem. Int. Ed. 2008,
47, 6954–6956; Angew. Chem. 2008, 120, 7060–7063.
[20] Z. Wang, L. Jiang, D. K. B. Mohamed, J. Zhao, T. S. A. Hor, Coord. Chem.
Rev. 2015, 293–294, 292–326.
[21] K. ꢅfele, E. Roos, M. Herberhold, Z. Naturforsch. B 1976, 31, 1070–1077.
[22] C. G. Kreiter, K. ꢅfele, G. W. Wieser, Chem. Ber. 1976, 109, 1749–1758.
[23] a) G. J. Kubas, C. J. Burns, G. R. K. Khalsa, L. S. Van Der Sluys, G. Kiss, C. D.
Hoff, Organometallics 1992, 11, 3390–3404; b) H. J. Wasserman, G. J.
Kubas, R. R. Ryan, J. Am. Chem. Soc. 1986, 108, 2294–2301.
[24] R. A. Henderson, D. L. Hughes, R. L. Richards, C. Shortman, J. Chem. Soc.
Dalton Trans. 1987, 1115–1121.
[25] a) G. J. Kubas, C. J. Burns, J. Eckert, S. W. Johnson, A. C. Larson, P. J.
Vergamini, C. J. Unkefer, G. R. K. Khalsa, S. A. Jackson, O. Eisenstein, J.
Am. Chem. Soc. 1993, 115, 569–581; b) G. J. Kubas, C. J. Unkefer, B. I
Swanson, E. Fukushima, J. Am. Chem. Soc. 1986, 108, 7000–7009; c) G. J.
Kubas, R. R. Ryan, D. A. Wrobleski, J. Am. Chem. Soc. 1986, 108, 1339–
1341.
ˇ
[7] A. Vyskocil, C. Viau, J. Appl. Toxicol. 1999, 19, 185–192.
[8] D. E. Polyak in 2015 Minerals Yearbook – Molybdenum, US Geological
Survey, Reston, VA, 2017, pp. 50.1–50.12.
[9] a) R. I. Khusnutdinov, T. M. Oshnyakova, U. M. Dzhemilev, Russ. Chem.
Rev. 2017, 86, 128–163; b) J. M. Khurana, S. Chauhan, A. Agrawal, Org.
Prep. Proced. Int. 2004, 36, 201–276.
[10] a) S. Chakraborty, O. Blacque, T. Fox, H. Berke, Chem. Eur. J. 2014, 20,
12641–12654; b) S. Chakraborty, O. Blacque, T. Fox, H. Berke, Chem.
Asian J. 2014, 9, 2896–2907; c) S. Chakraborty, H. Berke, ACS Catal.
2014, 4, 2191–2194; d) P. J. Baricelli, L. G. Melean, S. Ricardes, V.
Guanipa, M. Rodriguez, C. Romero, A. J. Pardey, S. Moya, M. Rosales, J.
Organomet. Chem. 2009, 694, 3381–3385; e) S. Namorado, M. A.
Antunes, L. F. Veiros, J. R. Ascenso, M. T. Duarte, A. M. Martins, Organo-
metallics 2008, 27, 4589–4599; f) B. F. M. Kimmich, P. J. Fagan, E.
Hauptman, W. J. Marshall, R. M. Bullock, Organometallics 2005, 24,
6220–6229.
[26] T. Tatsumi, H. Tominaga, M. Hidai, Y. Uchida, J. Organomet. Chem. 1981,
215, 67–76.
[11] a) L. Y. Kuo, D. M. Finigan, N. N. Tadros, Organometallics 2003, 22, 2422–
2425; b) T. Tatsumi, M. Shibagaki, H. Tominaga, J. Mol. Catal. 1984, 24,
Manuscript received: May 15, 2018
Version of record online: &&&, &&&&
ChemCatChem 2018, -53, 1–7
6
ꢀ 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!