J. Chem. Phys., Vol. 108, No. 20, 22 May 1998
Lohokare et al.
8649
seen in the TPRS experiments indicates that it matches well
with the results obtained for an initial 2 L exposure of isobu-
tyl iodide.64
6 L. H. Dubois, B. E. Bent, and R. G. Nuzzo, Surface Reactions, edited by
R. J. Madix, ͑Springer, Berlin, 1994͒, Vol. 34, p. 135.
7 M. K. Weldon and C. M. Friend, Chem. Rev. 96, 1391 ͑1996͒.
8 S. T. Ceyer, D. J. Gladstone, M. McGonigal, and M. T. Schulberg, Physi-
cal Methods of Chemistry, 2nd ed., edited by B. W. Rossiter, and R. C.
Baetzold ͑Wiley, New York 1993͒.
The final issue we address is the mechanism of the
collision-induced -hydride elimination reaction. We noted
earlier that the energy transfer is mass dependent and, for a
large mass atom such as xenon, the impact should essentially
crush the isobutyl groups. A similar mechanism was pro-
posed by Ceyer et al.,25 in which a dissociating methane
molecule is trapped between the Kr ͑the highest mass used in
that study͒ and a nickel surface. The deformation of the tet-
rahedral structure of the methane molecule caused by the
impact brings the carbon closer to the metal surface and al-
lows a hydrogen from the deformed C–H bond to tunnel to
the metal surface. We believe a similar mechanism may be
operating in the present system as well. Such mechanisms
appear to be general, at least on the basis of the reports
available in the literature which describe the CID of
methane65–67 and ethane65,68,69 on various metal surfaces. It
is interesting to note that, for the latter, the preferred disso-
ciation is that of the C–H and not the C–C bond. Madix and
McMaster68 have shown that the experimental results are in
excellent agreement with those predicted from the Eckart
tunneling model70 where the motion along the one-
dimensional reaction coordinate for the lowest energy tun-
neling pathway are well represented by the Eckart potential.
The activation of the -hydride elimination reaction with a
threshold energy as small as ϳ1.1 eV, which coincides with
the thermal activation barrier for the reaction, suggests that
the reaction proceeds via a non-RRKM type mechanism.44 If
the reaction followed an equilibrium energy dissipation path-
way, where the energy was distributed uniformly to all the
internal modes, then the total energy required to activate the
C–H bond would be much larger than is feasible via energy
transfer from a hyperthermal neutral gas molecular beam.
Since the interaction time of the colliding atom with the
adsorbate is of the order of the vibrational lifetime, the col-
lision can be viewed as being totally impulsive in nature. It is
possible that the isobutyl fragment is oriented on the surface
with its methyls pointing away from the surface ͑the RAIRS
data are consistent with this picture͒.63 A collision-based dis-
tortion would bring the activatable beta hydrogen and the
surface into close proximity. Further development of this ar-
gument requires a more detailed knowledge of the structural
aspects of the surface bound isobutyl groups than is currently
available.
9 C. R. Arumainayagam and R. J. Madix, Prog. Surf. Sci. 38, 1 ͑1992͒.
10 L. Q. Xia and J. R. Engstrom, J. Chem. Phys. 101, 5329 ͑1994͒.
11 L. Q. Xia, M. E. Jones, J. N. Maity, and J. R. Engstrom, J. Chem. Phys.
103, 1691 ͑1995͒.
12 K. A. Pacheco, B. A. Ferguson, C. Li, S. John, S. Banerjee, and C. B.
Mullins, Appl. Phys. Lett. 67, 2951 ͑1995͒.
13 S. R. Leone, Jpn. J. Appl. Phys., Part 1 34, 2073 ͑1995͒.
14 Y. Zeiri, J. J. Low, and W. A. Goddard III, J. Chem. Phys. 84, 2408
͑1986͒.
15 Y. Zeiri, Surf. Sci. 231, 404 ͑1990͒.
16 Y. Zeiri and R. R. Lucchese, J. Chem. Phys. 94, 4055 ͑1991͒.
17 E. Vilallonga and H. Rabitz, J. Chem. Phys. 97, 1562 ͑1992͒.
18 K. Yang, H. Cheng, E. Vilallonga, and H. Rabitz, Surf. Sci. 326, 177
͑1995͒.
19 J. D. Beckerle, A. D. Johnson, and S. T. Ceyer, Phys. Rev. Lett. 62, 685
͑1989͒.
20 J. D. Beckerle, A. D. Johnson, and S. T. Ceyer, J. Chem. Phys. 93, 4047
͑1990͒.
21 S. T. Ceyer, Science 249, 133 ͑1990͒.
22 S. T. Ceyer, Langmuir 6, 82 ͑1990͒.
23 J. D. Beckerle, A. D. Johnson, Q. Y. Yang, and S. T. Ceyer, Solvay
Conference on Surface Science ͑Springer-Verlag, Berlin, 1988͒.
24 J. D. Beckerle, Q. Y. Yang, A. D. Johnson, and S. T. Ceyer, J. Chem.
Phys. 86, 7236 ͑1987͒.
25 J. D. Beckerle, A. D. Johnson, Q. Y. Yang, and S. T. Ceyer, J. Chem.
Phys. 91, 5756 ͑1989͒.
26 G. Szulczewski and R. J. Levis, J. Chem. Phys. 101, 11070 ͑1994͒.
27 G. Szulczewski and R. J. Levis, J. Chem. Phys. 103, 10238 ͑1995͒.
28 D. Velic and R. J. Levis, J. Chem. Phys. 104, 9629 ͑1996͒.
29 L. Romm, T. Livneh, and M. Asscher, J. Chem. Soc. Faraday Trans. 91,
3655 ͑1995͒.
30 J. R. Engstrom, D. A. Hansen, M. J. Furjanic, and L. Q. Xia, J. Chem.
Phys. 99, 4051 ͑1993͒.
31 M. E. Gross, L. R. Harriott, and R. L. Opila, Jr., J. Appl. Phys. 68, 4820
͑1990͒.
32 R. Jairath, A. Jain, M. J. Hampden-Smith, and T. T. Kodas, CVD of Metal,
edited by M. J. Hampden-Smith and T. T. Kodas ͑VCH, Weinheim,
1995͒, p. 1.
33 B. E. Bent, R. G. Nuzzo, and L. H. Dubois, Mater. Res. Soc. Symp. Proc.
101, 177 ͑1988͒.
34 B. E. Bent, R. G. Nuzzo, and L. H. Dubois, Mater. Res. Soc. Symp. Proc.
131, 327 ͑1989͒.
35 B. E. Bent, R. G. Nuzzo, and L. H. Dubois, J. Am. Chem. Soc. 111, 1634
͑1989͒.
36 B. E. Bent, C. T. Kao, B. R. Zegarski, L. H. Dubois, and R. G. Nuzzo, J.
Am. Chem. Soc. 113, 9112 ͑1991͒.
37 B. E. Bent, R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, J. Am. Chem.
Soc. 113, 1137 ͑1991͒.
38 B. C. Wiegand, S. P. Lohokare, and R. G. Nuzzo, J. Phys. Chem. 97,
11553 ͑1993͒.
39 G. Scoles, D. Bass, U. Buck, and D. Laine, Atomic and Molecular Beam
Methods ͑Oxford University Press, New York, 1988͒, Vol. 1.
40 J. B. Anderson, Molecular Beams and Low Density Gas Dynamics, edited
by P. P. Wegener ͑Marcel Dekker, New York, 1974͒.
41 S. P. Lohokare, E. L. Crane, L. H. Dubois, and R. G. Nuzzo, Langmuir 14,
1328 ͑1998͒.
ACKNOWLEDGMENT
We are grateful for the funding support for this project
by the National Science Foundation ͑Grant Nos. CHE-
9300995 and CHE-9626871͒.
42 J. B. Anderson and J. B. Fenn, Phys. Fluids 8, 780 ͑1965͒.
43 J. A. O’Hanlon, User’s Guide to Vacuum Technology ͑Wiley, New York,
1980͒.
44 R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and
Chemical Reactivity ͑Oxford University Press, New York, 1987͒.
45 A. G. Urena, J. Phys. Chem. 96, 8212 ͑1992͒.
1 G. A. Somorjai, Chemistry in Two Dimensions ͑Cornell University Press,
Ithaca, 1981͒.
46 R. D. Levine, Chem. Phys. Lett. 11, 109 ͑1971͒.
47 R. D. Levine and R. B. Bernstein, J. Chem. Phys. 56, 2281 ͑1972͒.
48 C. Rebick and R. D. Levine, J. Chem. Phys. 58, 3942 ͑1973͒.
49 E. E. Park, A. Wagner, and S. Wexler, J. Chem. Phys. 58, 5502 ͑1973͒.
50 A. F. Wagner and E. K. Parks, J. Chem. Phys. 65, 4343 ͑1976͒.
51 E. K. Parks, N. J. Hansen, and S. Wexler, J. Chem. Phys. 58, 5489 ͑1973͒.
2 D. A. King, CRC Crit. Rev. Solid State Mater. Sci. 7, 167 ͑1978͒.
3 B. E. Bent, Chem. Rev. 96, 1361 ͑1996͒.
4 J. G. Ekerdt, Y. M. Sun, A. Szabo, G. J. Szulczewski, and J. M. White,
Chem. Rev. 96, 1499 ͑1996͒.
5 J. R. Creighton and J. E. Parmeter, Crit. Rev. Solid State Mater. Sci. 18,
175 ͑1993͒.
128.138.73.68 On: Mon, 22 Dec 2014 11:33:32