10.1002/chem.202101140
Chemistry - A European Journal
FULL PAPER
[5]
[6]
a) M. R. Kember, A. Buchard, C. K. Williams, Chem.
Commun. 2011, 47, 141-163; b) S. Klaus, M. W.
Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem.
Rev. 2011, 255, 1460-1479.
other Co(III) catalysts since they replace ionic salts, such as
PPNCl, and obviate complex salt ‘tethering’ processes which
complicate catalyst preparations. In contrast, these catalysts
feature the Co(III) and Na(I) centres ligated by a common
macrocyclic ligand and positioned close to one another so as to
modify and moderate reactivity appropriately. Future
investigations should target a broad range of other metallate
catalysts, combining transition metals/main group elements with
alkali or alkaline earth metals to understand the potential for
heterodinuclear catalysts to deliver high carbon dioxide uptakes,
high rates and polymerization control. These new carbon
dioxide/epoxide copolymerization catalysts are also likely to show
good activity in other copolymerizations, using heterocumulenes,
heterocycles and cyclic anhydrides, as well as to lactone or lactide
ring-opening polymerizations allowing access to new materials
and structures derived from carbon dioxide.
a) S. Inoue, H. Koinuma, T. Tsuruta, J. Poly. Sci. B Pol.
Lett. 1969, 7, 287-292; b) S. Chen, Q. I. Guo-Rong, Z. J.
Hua, H. Q. Yan, J. Polym. Sci., Part A: Polym. Chem.
2004, 42, 5284-5291; c) T. Hirano, S. Inoue, T. Tsuruta,
Makromol. Chem. 1976, 177, 3245-3253; d) T. Hirano, S.
Inoue, T. Tsuruta, Makromol. Chem. 1975, 176, 1913-
1917; e) S. Inoue, T. Hirano, T. Tsuruta, Polym. J. 1977,
9, 101-106; f) R. Eberhardt, M. Allmendinger, M. Zintl, C.
Troll, G. A. Luinstra, B. Rieger, Macromol. Chem. Phys.
2004, 205, 42-47; g) J. S. Kim, M. Ree, S. W. Lee, W. Oh,
S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, J. Lüning, J.
Catal. 2003, 218, 386-395; h) M. Ree, J. Y. Bae, J. H.
Jung, T. J. Shin, Polym. Sci., Part A: Polym. Chem. 1999,
37, 1863-1876; i) Y. Hwang, H. Kim, M. Ree, Macromol.
Symp. 2005, 224, 227-238; j) N. J. Robertson, Z. Qin, G.
C. Dallinger, E. B. Lobkovsky, S. Lee, G. W. Coates,
Dalton Trans. 2006, 5390-5395.
[7]
a) S. J. Na, S. S, A. Cyriac, B. E. Kim, J. Yoo, Y. K. Kang,
S. J. Han, C. Lee, B. Y. Lee, Inorg. Chem. 2009, 48,
10455-10465; b) W.-M. M. Ren, X. Zhang, Y. Liu, J.-F. F.
Li, H. Wang, X.-B. B. Lu, Macromolecules 2010, 43, 1396-
1402; c) G.-P. Wu, S.-H. Wei, X.-B. Lu, W.-M. Ren, D. J.
Darensbourg, Macromolecules 2010, 43, 9202-9204; d)
G.-P. Wu, S.-H. Wei, W.-M. Ren, X.-B. Lu, T.-Q. Xu, D. J.
Darensbourg, J. Am. Chem. Soc. 2011, 133, 15191-
15199; e) W.-M. Ren, Z.-W. Liu, Y.-Q. Wen, R. Zhang, X.-
B. Lu, J. Am. Chem. Soc. 2009, 131, 11509-11518; f) E.
K. Noh, S. J. Na, S. S, S.-W. Kim, B. Y. Lee, J. Am. Chem.
Soc. 2007, 129, 8082-8083; g) S. S, J. K. Min, J. E.
Seong, S. J. Na, B. Y. Lee, Angew. Chem. Int. Ed. 2008,
47, 7306-7309; Angew. Chem. 2008, 120, 7416-7419; h)
K. Nakano, T. Kamada, K. Nozaki, Angew. Chem. Int. Ed.
2006, 45, 7274-7277; Angew. Chem. 2006, 118, 7432-
7435; i) G. W. Yang, Y. Y. Zhang, R. Xie, G. P. Wu, J. Am.
Chem. Soc. 2020, 142, 12245-12255; j) X.-B. B. Lu, D. J.
Darensbourg, Chem. Soc. Rev. 2012, 41, 1462-1484; k) Z.
Qin, C. M. Thomas, S. Lee, G. W. Coates, Angew. Chem.
Int. Ed. 2003, 42, 5484-5487; Angew. Chem. 2003, 115,
5642-5645; l) M. I. Childers, J. M. Longo, N. J. Van Zee,
A. M. Lapointe, G. W. Coates, Chem. Rev. 2014, 114,
8129-8152; m) D. J. Darensbourg, Chem. Rev. 2007, 107,
2388-2410; n) Y. Liu, W.-M. Ren, C. Liu, S. Fu, M. Wang,
K.-K. He, R.-R. Li, R. Zhang, X.-B. Lu, Macromolecules
2014, 47, 7775-7788; o) J. Liu, W. M. Ren, Y. Liu, X. B.
Lu, Macromolecules 2013, 46, 1343-1349; p) T.
Ohkawara, K. Suzuki, K. Nakano, S. Mori, K. Nozaki, J.
Am. Chem. Soc. 2014, 136, 10728-10735; q) J. Yoo, S. J.
Na, H. C. Park, A. Cyriac, B. Y. Lee, Dalton Trans. 2010,
39, 2622.
Acknowledgements
The EPSRC (EP/S018603/1, EP/R027129/1, EP/V003321/1),
the Oxford Martin School (Future of Plastics) and Econic
Technologies (CASE award to Wouter Lindeboom) are
acknowledged for research funding.
Keywords: Heterodinuclear complexes • ROCOP • Carbon
dioxide (CO2) • Sodium • Catalysis
Experimental Section
Experimental and characterisation details can be found in the
supporting information.
Deposition
numbers
^^<url
2/chem.202101140">2073147-2073150 (for 1, 1(EtOH), 3 and 11)
</url> contain(s) the supplementary crystallographic data for this
paper. These data are provided free of charge by the joint Cambridge
Crystallographic Data Centre and Fachinformationszentrum
Structures service</url>.
References
[1]
[2]
[3]
J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys,
A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018,
118, 434-504.
a) Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540,
354-362; b) M. D. Burkart, N. Hazari, C. L. Tway, E. L.
Zeitler, ACS Catal. 2019, 9, 7937-7956.
[8]
a) A. Buchard, M. R. Kember, K. G. Sandeman, C. K.
Williams, Chem. Commun. 2011, 47, 212-214; b) M. R.
Kember, F. Jutz, A. Buchard, A. J. P. White, C. K.
Williams, Chem. Sci. 2012, 3, 1245-1255; c) P. K. Saini,
C. Romain, C. K. Williams, Chem. Commun. 2014, 50,
4164-4167; d) J. A. Garden, P. K. Saini, C. K. Williams, J.
Am. Chem. Soc. 2015, 137, 15078-15081.
a) M. R. Kember, P. D. Knight, P. T. R. R. Reung, C. K.
Williams, Angew. Chem. Int. Ed. 2009, 48, 931-933;
Angew. Chem. 2009, 121, 949-951; b) M. R. Kember, A. J.
P. White, C. K. Williams, Macromolecules 2010, 43, 2291-
2298.
a) G. Trott, J. A. Garden, C. K. Williams, Chem. Sci. 2019;
b) A. C. Deacy, C. B. Durr, J. A. Garden, A. J. P. White, C.
K. Williams, Inorg. Chem. 2018, 57, 15575-15583.
A. C. Deacy, A. F. R. Kilpatrick, A. Regoutz, C. K.
Williams, Nat. Chem. 2020, 12.
H. Nagae, R. Aoki, S. N. Akutagawa, J. Kleemann, R.
Tagawa, T. Schindler, G. Choi, T. P. Spaniol, H. Tsurugi,
J. Okuda, K. Mashima, Angew. Chem. Int. Ed. 2018, 57,
2492-2496.
a) Y. Wang, D. J. Darensbourg, Coord. Chem. Rev. 2018,
372, 85-100; b) C. M. Kozak, K. Ambrose, T. S. Anderson,
Coord. Chem. Rev. 2018, 376, 565-587; c) G. Trott, P. K.
Saini, C. K. Williams, Phil. Trans. R. Soc. a 2016, 374,
20150085.
a) A. M. Chapman, C. Keyworth, M. R. Kember, A. J. J. J.
Lennox, C. K. Williams, ACS Catal. 2015, 5, 1581-1588; b)
N. von der Assen, A. Bardow, Green Chem. 2014, 16,
3272-3280; c) S. H. Lee, A. Cyriac, J. Y. Jeon, B. Y. Lee,
Polymer Chem. 2012, 3, 1215-1220; d) J. Langanke, A.
Wolf, J. Hofmann, K. Böhm, M. A. Subhani, T. E. Müller,
W. Leitner, C. Gürtler, Green Chem. 2014, 16, 1865-1870;
e) O. Hauenstein, S. Agarwal, A. Greiner, Nat. Commun.
2016, 7, 1-7; f) T. Stößer, C. Li, J. Unruangsri, P. K. Saini,
R. J. Sablong, M. A. R. R. Meier, C. K. Williams, C.
Koning, Polymer Chem. 2017, 8, 6099-6105.
[9]
[4]
[10]
[11]
[12]
7
This article is protected by copyright. All rights reserved.