ARSLAN et al./Turk J Chem
4
. Conclusions
Two imine ligands (BPDA and BMDA) were synthesized by simple and straightforward reactions according to
the literature.50 Linear first-order kinetic plots were observed for the ATRP of styrene using the BPDA and
BMDA ligands. The polymerization proceeded at a moderate rate and in a controlled manner. The apparent
rate constant versus [ligand]/[catalyst] ratio plots showed a plateau above the [ligand]/[catalyst] ratio of one, i.e.
catalyst complex containing 1 mol of CuCl per mol of ligand molecule. The molecular weights increased rapidly
at the beginning of the styrene polymerization and after that increased linearly with conversion; however, they
were higher than the theoretical values. This was attributed to the slow deactivation rate of the catalytic system,
which causes a rapid increase in the molecular weight at the beginning of polymerization. The introduction of
a methyl group instead of the phenyl group into the ligand structure did not affect the solubility of catalyst and
the polymerization systems remained heterogeneous.
References
1
2
3
4
5
6
7
8
9
.
.
.
.
.
.
.
.
.
Wang, J. S.; Matyjaszewski K. J. Am. Chem. Soc. 1995, 117, 5614–5615.
Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721–1723.
Percec, V.; Barboiu B. Macromolecules 1995, 28, 7970–7972.
Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689–3746.
Quchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev. 2009, 109, 4963–5050.
Lena, F.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959–1021.
Pintauer, T.; Matyjaszewski, K. Coordin. Chem. Rev. 2005, 249, 1155–1184.
Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270–2299.
Tang, W.; Matyjaszewski, K. Macromolecules 2006, 39, 4953–4959.
1
1
1
1
1
1
0. Davis, K. A.; Matyjaszewski, K. Macromolecules 2000, 33, 4039–4047.
1. Gurr, P. A.; Mills, M. F.; Qiao, G. G.; Solomon, D. H. Polymer 2005, 46, 2097–2104.
2. Muhlebach, A.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1998, 31, 6046–6052.
3. Shen, Y.; Zhu, S.; Zeng, F.; Pelton, R. Macromolecules 2000, 33, 5427–5431.
4. Teodorescu, M.; Matyjaszewski, K. Macromolecules 1999, 32, 4826–4831.
5. Tsarevsky, N. V.; Braunecker, W. A.; Tang, W.; Brooks, S. J.; Matyjaszewski, K.; Weisman, G. R.; Wong, E. H.
J. Mol. Catal. A-Chem. 2006, 257, 132–140.
1
1
1
1
2
2
6. Wootthikanokkhan, J.; Peesan, M.; Phinyocheep, P. Eur. Polym. J. 2001, 37, 2063–2071.
7. Brar, A. S.; Kaur, S. J. Polym. Sci. Pol. Chem. 2005, 43, 5906–5922.
8. Inoue, Y.; Matyjaszewski, K. Macromolecules 2004, 37, 4014–4021.
9. Zhang, H.; Klumperman, B.; van der Linde, R. Macromolecules 2002, 35, 2261–2267.
0. Zhang, H.; van der Linde, R. J. Polym. Sci. Pol Chem. 2002, 40, 3549–3561.
1. Haddleton, D. M.; Clark, A. J.; Crossman, M. C.; Duncalf, D. J.; Heming, A. M.; Morsley, S. R.; Shooter, A. J.
Chem. Commun. 1997, 1173–1174.
2
2
2
2. Raghunadh, V.; Baskaran, D.; Sivaram, S. Polymer 2004, 45, 3149–3155.
3. Mittal, A.; Sivaram, S. J. Polym. Sci. Pol. Chem. 2005, 43, 4996–5008.
4. Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J.
Macromolecules 1999, 32, 2110–2119.
2
5. Iovu, M.; Maithufi, N.; Mapolie, S. Macromol. Symp. 2003, 193, 209–226.
830