4880
R. E. Martin et al. / Tetrahedron Letters 52 (2011) 4878–4881
Table 1
Diastereoselective allylation of ketone 10
Entry
Conditionsa
Yieldb (%)
drc S,S 11:S,R 12
1
2
3
4
5
6
7
8
9
10
Allylmagnesium bromide, THF, 3 h, 0 °C
75
82
80
81
77
83
78
81e
80e
92
46:54
46:54
46:54
12:88
21:79
14:86
12:88
36:64
34:66
31:69
d
Allylmagnesium bromide, Ti(OiPr)4 THF, 0.5 h, ꢀ78 °C
Allylmagnesium bromide, THF, 0.5 h, 35 °C
Tetraallyltin, Ti(OiPr)4, R-BINOL (20 mol %), 2-propanol, CH2Cl2, 24 h, rt
Tetraallyltin, Ti(OiPr)4, R-BINOL (30 mol %), 2-propanol, CH2Cl2, 12 h, rt
Tetraallyltin, Ti(OiPr)4, R-BINOL (20 mol %), 2-propanol, CH2Cl2, 68 h, rt
Tetraallyltin, Ti(OiPr)4, R-BINOL (30 mol %), 2-propanol, CH2Cl2, 12 h, 0 °C
Tetraallyltin, Ti(OiPr)4, S-BINOL (30 mol %), 2-propanol, CH2Cl2, 12 h, rt
Tetraallyltin, Ti(OiPr)4, S-BINOL (30 mol %), 2-propanol, CH2Cl2, 60 h, rt
Tetraallyltin, Ti(OiPr)4, S-BINOL (60 mol %), 2-propanol, CH2Cl2, 60 h, rt
a
Reactions were carried out on 150 mg of ketone 10 and each reaction was repeated twice where the yield and diastereomeric ratio (dr) are averaged over two
experiments.
b
Isolated yields are reported, the two diastereoisomers were separated using standard column chromatography.
c
d
e
The configuration of the new stereogenic centre at C20 was determined later by NOESY spectroscopy for each indolizidine epimer.
2 equiv.
The yield indicated was based on recovery of starting material 10.
H C
H3
CH
3OH
TBSO
H
OH
TBOS CH3
H
were the allylation which may be used to also generate a diastereo-
merically pure indolizidine, and a pyrrolidine-tethered intramolec-
ular Tsuji-Trost reaction. Work is in progress in order to expand
this synthetic protocol to the total synthesis of the pumiliotoxin
alkaloids and derivatives.
a
b
4'
N
Boc
N
Boc
13
N
OH
Boc
14
12
c
Acknowledgements
CH3
TBSO CH
H
TBSO
3O
TBSO CH3
H
OH
The authors would like to thank Dr. Tony Reeder for mass spec-
tra acquisition. Romy Martin is the recipient of an Australian Post-
graduate Award (APA).
H
e
d
N
Boc
OAc
N
OAc
N
Boc
OAc
Boc
Supplementary data
16
15
17
Supplementary data associated with this article can be found, in
f
CH3
TBSO CH3
H
H3C
OTBS
8
H
References and notes
TBSO
8
g
N
a
N
1. Franklin, A. S.; Overman, L. E. Chem. Rev. 1996, 96, 505.
2. Daly, J. W. J. Med. Chem. 2003, 46, 445.
3. Daly, J.; Spande, T.; Garraffo, H. J. Nat. Prod. 2005, 68, 1556.
4. Daly, J. W.; Tokuyama, T.; Fujiwara, T.; Highet, R. J.; Karle, I. L. J. Am. Chem. Soc.
1980, 102, 830.
5. Daly, J. W. J. Nat. Prod. 1998, 61, 162.
6. Endoh, M. Br. J. Pharmacol. 2004, 143, 663.
7. Albuquerque, E. X.; Warnick, J. E.; Maleque, M. A.; Kauffman, F. C.; Tamburini,
R.; Nimit, Y.; Daly, J. W. Mol. Pharmacol. 1981, 19, 411.
8. Gusovsky, F.; Padgett, W. L.; Creveling, C. R.; Daly, J. W. Mol. Pharmacol. 1992,
42, 1104.
NH
OAc
H
20
20
18
Scheme 2. Reagents and conditions: (a) TBS-triflate, 2,6-lutidine, CH2Cl2, 0 °C, 2 h,
83%; (b) AD-mix- , t-BuOH, H2O, Na2SO3, 0 °C ? rt, 48 h, 82%; (c) Ac2O, Et3N,
CH2Cl2, rt, 24 h, 86%; (d) Dess-Martin periodinane, CH2Cl2, rt, 2 h, 72%; (e)
BrCH3PPh3, NaHMDS, THF, rt, 2 h, 64%; (f) TFA, CH2Cl2, rt, 2 h; (g) Pd(PPh3)4
(10 mol %), Et3N, THF, 60 °C, 2 h, 66%.
a
9. Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
10. Overman, L. E.; Lesuisse, D. Tetrahedron Lett. 1985, 26, 4167.
11. Overman, L. E.; Bell, K. L.; Ito, F. J. Am. Chem. Soc. 1984, 106, 4192.
12. Koenig, K. E.; Weber, W. P. J. Am. Chem. Soc. 1973, 95, 3416.
13. Lin, N. H.; Overman, L. E.; Rabinowitz, M. H.; Robinson, L. A.; Sharp, M. J.;
Zablocki, J. J. Am. Chem. Soc. 1996, 118, 9062.
H
CH3
N
H
CH
N
3H
TBSO
TBSO
X
H
H
H
H
H
H
14. Fox, D.; Lathbury, D.; Mahon, M.; Molloy, K.; Gallagher, T. J. Am. Chem. Soc.
1991, 113, 2652.
H
H
H
15. Martin, S. F.; Bur, S. K. Tetrahedron 1999, 55, 8905.
16. Barrett, A. G. M.; Damiani, F. J. Org. Chem. 1999, 64, 1410.
17. Wang, B.; Fang, K.; Lin, G.-Q. Tetrahedron Lett. 2003, 44, 7981.
18. Sudau, A.; Münch, W.; Bats, J.; Nubbemeyer, U. Eur. J.Org. Chem. 2002, 3304.
19. O’Mahony, G.; Nieuwenhuyzen, M.; Armstrong, P.; Stevenson, P. J. J.Org. Chem.
2004, 69, 3968.
20. Ni, Y.; Zhao, G.; Ding, Y. J. Chem. Soc., Perkin Trans. 1 2000, 3264.
21. Aoyagi, S.; Hirashima, S.; Saito, K.; Kibayashi, C. J. Org. Chem. 2002, 67, 5517.
22. Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
23. (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921; (b) Trost, B. M.;
Cossy, J. J. Am. Chem. Soc. 1982, 104, 6881–6882.
24. Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
25. Nicolaou, K. C.; Bulger, P.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
26. Trost, B. M. J. Org. Chem. 2004, 69, 5813.
27. Tietze, L. F.; Schirok, H. Angew. Chem., Int. Ed. 1997, 36, 1124.
28. Wagger, J.; Groselj, U.; Meden, A.; Svete, J.; Stanovnik, B. Tetrahedron 2008, 64,
2801.
Figure 2. Key NOE interactions for (8S,8aR)-methyleneindolizidine 20.
a series of pumiliotoxins, or their 8aR epimers, a Grubbs olefin
metathesis will be considered. Another option for further synthetic
studies towards these natural product alkaloids would be through
the 6-indolizidinone available through oxidative cleavage of com-
pound 20.
In conclusion, we have demonstrated a new and concise synthe-
sis of a compound bearing the indolizidine core with an exocyclic
methylene and two stereogenic centres at C8 and C8a. The key
transformations in the synthesis of this indolizidine derivative