Mitochondrial Toxicity of Cysteinylnorepinephrine
Chem. Res. Toxicol., Vol. 13, No. 8, 2000 759
(24) Zeevalk, G. D., and Nicklas, W. J . (1991) Mechanisms underlying
initiation of excitotoxicity associated with metabolic inhibition.
J . Pharmacol. Exp. Ther. 257, 870-878.
(25) Lafon-Cazal, M., Pletri, S., Culcasi, M., and Bockaert, J . (1993)
NMDA-dependent superoxide production and neurotoxicity. Na-
ture 364, 535-537.
(26) Brieland, J . K., and Fantone, J . C. (1991) Ferrous iron release
from transferrin by human neutrophil-derived superoxide an-
ion: effect of pH and iron saturation. Arch. Biochem. Biophys.
284, 78-83.
(27) Flint, D. H., Tuminello, J . F., and Emptage, M. H. (1993) The
inactivation of Fe-S cluster containing hydrolyases by superox-
ide. J . Biol. Chem. 268, 22369-22376.
(28) Yoshida, T., Tanaka, M., Somomatsu, A., and Hirai, S. (1995)
Activated microglia cause superoxide-mediated release of iron
from ferritin. Neurosci. Lett. 190, 21-24.
(29) Cooper, A. J . L. (1998) Role of astrocytes in maintaining cerebral
glutathione homeostasis and protecting the brain against xeno-
biotics and oxidative stress. In Glutathione in the Nervous System
(Shaw, C. A., Ed.) pp 91-115, Taylor and Francis, Washington,
DC.
(46) Scatton, B., J avoy-Agid, F., Rouquier, L., Dubois, B., and Agid,
Y. (1983) Reduction of cortical dopamine, noradrenaline, serotonin
and their metabolites in Parkinson’s disease. Brain Res. 275,
321-328.
(47) Gerlach, M., J ellinger, K., and Riederer, P. (1994) The possible
role of noradrenergic deficits in selected signs of Parkinson’s
disease. In Noradrenergic Mechanisms in Parkinson’s Disease
(Briley, M., and Marien, M., Eds.) pp 59-71, CRC Press, Boca
Raton, FL.
(48) Shen, X.-M., and Dryhurst, G. (1996) Oxidation chemistry of (-)-
norepinephrine in the presence of L-cysteine. J . Med. Chem. 39,
2018-2029.
(49) Lowry, O. H., Rosebrough, N. J ., Farr, A. L., and Randall, R. J .
(1951) Protein measurement with the Folin phenol reagent. J .
Biol. Chem. 193, 265-275.
(50) Tabatabaie, T., Potts, J . D., and Floyd, R. A. (1996) Reactive
oxygen species-mediated inactivation of pyruvate dehydrogenase.
Arch. Biochem. Biophys. 336, 290-296.
(51) Lai, J . C. K., and Cooper, A. J . L. (1996) Brain R-ketoglutarate
dehydrogenase complex: kinetic properties, regional distribution,
and effects of inhibitors. J . Neurochem. 47, 1376-1386.
(52) Shen, X.-M., Zhang, F., and Dryhurst, G. (1997) Oxidation of
dopamine in the presence of cysteine: characterization of new
toxic products. Chem. Res. Toxicol. 10, 147-155.
(30) Cao, C. J ., Eldefrawi, A. T., and Eldefrawi, M. E. (1990) ATP-
regulated neuronal catecholamine uptake: a new mechanism. Life
Sci. 47, 655-667.
(53) Runswick, M. J ., Gennis, R. B., Fearnley, I. M., and Walker, J .
E. (1989) Mitochondrial NADH:ubiquinone reductase: comple-
mentary DNA sequence of the import precursors of the bovine
75-kDa subunit. Biochemistry 28, 9452-9459.
(54) Masui, R., Wakabayashi, S., Matsubara, H., and Hatefi, Y. (1991)
The amino acid sequences of two 13 kDa polypeptides and partial
amino acid sequence of 30 kDa polypeptide of complex I from
bovine heart mitochondria: possible location of iron-sulfur
clusters. J . Biochem. (Tokyo) 109, 534-543.
(31) Spencer, J . P. E., J enner, P., Daniel, S. E., Lees, A. J ., Marsden,
C. D., and Halliwell, B. (1998) Conjugates of catecholamines with
cysteine and GSH in Parkinson’s disease. Possible mechanisms
of formation involving reactive oxygen species. J . Neurochem. 71,
2112-2122.
(32) Sagara, J ., Miura, K., and Bannai, S. (1993) Maintenance of
neuronal glutathione by glial cells. J . Neurochem. 61, 1672-1676.
(33) Tate, S. S., and Meister, A. (1985) γ-Glutamyl transpeptidase from
kidney. Methods Enzymol. 113, 400-437.
(55) Graupe, K., Trommer, W. E., and Bisswanger, H. (1989) Interac-
tion between catalytic and regulatory sites of the pyruvate
dehydrogenase from Escherichia coli studied by the ESR tech-
nique. Biochim. Biophys. Acta 999, 176-182.
(56) Ali, M. S., Roche, T. E., and Patel, M. S. (1993) Identification of
the essential cysteine residue in the active site of bovine pyruvate
dehydrogenase. J . Biol. Chem. 268, 22353-22356.
(57) Bunik, V. I., Buneeva, O. A., and Gomazkova, V. S. (1990)
Regulation of R-ketoglutarate dehydrogenase cooperative proper-
ties in substrate binding by thiol-disulfide exchange. Biochem.
Int. 21, 873-881.
(34) Bannai, S. (1984) Transport of cystine and cysteine in mammalian
cells. Biochim. Biophys. Acta 779, 289-306.
(35) Dringen, R., Pfeiffer, B., and Hamprecht, B. (1999) Synthesis of
the antioxidant glutathione in neurons: supply by astrocytes of
CysGly as precursor for neuronal glutathione. J . Neurosci. 19,
562-569.
(36) Carboni, S., Melis, F., Pani, L., Hadjiconstantinou, M., and
Rossetti, Z. L. (1990) The non-competitive NMDA-receptor an-
tagonist MK-801 prevents the massive release of glutamate and
aspartate from rat striatum induced by 1-methyl-4-phenylpyri-
dinium (MPP+). Neurosci. Lett. 117, 129-133.
(58) Sian, J ., Dexter, D., Lees, A., Daniel, S., Agid, Y., J avoy-Agid, F.,
J enner, P., and Marsden, C. D. (1994) Alterations in glutathione
levels in Parkinson’s disease and other neurodegenerative disor-
ders affecting the basal ganglia. Ann. Neurol. 36, 348-355.
(59) Saggu, H., Cooksey, J ., Dexter, D., Wells, F. R., Lees, A. J ., J enner,
P., and Marsden, C. D. (1989) A selective increase in particulate
superoxide dismutase activity in parkinsonian substantia nigra.
J . Neurochem. 53, 692-697.
(37) Fornstedt, B., Brun, A., Rosengren, E., and Carlsson, A. (1989)
The apparent autoxidation rate of catechols in dopamine-rich
regions of human brains increases with the depigmentation of
substantia nigra. J . Neural Transm.: Parkinson’s Dis. Dementia
Sect. 1, 279-295.
(38) Shen, X.-M., and Dryhurst, G. (1996) Further insights into the
influence of L-cysteine on the oxidation chemistry of dopamine:
reaction pathways of potential relevance to Parkinson’s disease.
Chem. Res. Toxicol. 9, 751-763.
(60) Sims, N. R., and Zaidan, E. (1995) Biochemical changes associated
with selective neuronal death following short-term cerebral
ischaemia. Int. J . Biochem. Cell Biol. 27, 531-550.
(39) Li, H., and Dryhurst, G. (1997) Irreversible inhibition of mito-
chondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-
(61) Globus, M. Y.-T., Busto, R., Dietrich, W. D., Martinez, E., Valde´s,
I., and Ginsberg, M. D. (1988) Intraischemic extracellular release
of dopamine and glutamate is associated with striatal vulner-
ability to ischemia. Neurosci. Lett. 91, 36-40.
2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1):
nigral endotoxin of relevance to Parkinson’s disease. J . Neuro-
chem. 69, 1530-1541.
a putative
(40) Li, H., Shen, X.-M., and Dryhurst, G. (1998) Brain mitochondria
catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-
2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1) to intermediates
that irreversibly inhibit complex I and scavenge glutathione:
potential relevance to the pathogenesis of Parkinson’s disease.
J . Neurochem. 71, 2049-2062.
(41) Shen, X.-M., Li, H., and Dryhurst, G. (2000) Oxidative metabolites
of 5-S-cysteinyldopamine inhibit R-ketoglutarate dehydrogenase
complex: potential relevance to the pathogenesis of Parkinson’s
disease. J . Neural Transm. (in press).
(42) Schapira, A. H. V., Mann, V. M., Cooper, J . M., Dexter, D., Daniel,
S. E., J enner, P., Clark, J . B., and Marsden, C. D. (1990) Anatomic
and disease specificity of NADH-CoQ1 reductase (complex I)
deficiency in Parkinson’s disease. J . Neurochem. 55, 2142-2145.
(43) Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and
Ikebe, S. (1994) An immunohistochemical study on R-ketoglut-
arate dehydrogenase complex in Parkinson’s disease. Ann. Neurol.
35, 204-210.
(62) Globus, M. Y.-T., Ginsberg, M. D., Dietrich, W. D., Busto, R., and
Scheinberg, P. (1987) Substantia nigra lesion protects against
ischemic damage in the striatum. Neurosci. Lett. 80, 251-256.
(63) Globus, M. Y.-T., Busto, R., Dietrich, W. D., Martinez, E., Valde´s,
I., and Ginsberg, M. D. (1989) Direct evidence for acute and
massive norepinephrine release in the hippocampus during
transient ischemia. J . Cereb. Blood Flow Metab. 9, 892-896.
(64) Busto, R., Harik, S. I., Yoshida, S., Scheinberg, P., and Ginsberg,
M. D. (1985) Cerebral norepinephrine depletion enhances recovery
after brain ischemia. Ann. Neurol. 18, 329-336.
(65) Rehncrona, S., Folbergrova´, J ., Smith, D. S., and Siesjo¨, B. (1980)
Influence of complete and pronounced incomplete cerebral is-
chemia and subsequent recirculation on cortical concentrations
of oxidized and reduced glutathione in the rat. J . Neurochem. 34,
477-486.
(66) Cooper, A. J . L., Pulsinelli, W. D., and Duffy, T. E. (1980)
Glutathione and ascorbate during ischemia and postischemic
reperfusion in rat brain. J . Neurochem. 35, 1242-1245.
(67) Slivka, A., and Cohen, G. (1993) Brain ischemia markedly elevates
levels of the neurotoxic amino acid, cysteine. Brain Res. 608, 33-
37.
(44) J ellinger, K. (1989) Pathology of Parkinson’s syndrome. In
Handbook of Experimental Pharmacology (Calne, D. B., Ed.) Vol.
8, pp 47-112, Springer-Verlag, Berlin.
(45) Riederer, P., Birkmayer, W., Seemann, D., and Wuketich, S.
(1977) Brain noradrenaline and 3-methoxy-4-hydroxyphenylglycol
in Parkinson’s syndrome. J . Neural Transm. 41, 245-251.
(68) Yang, C. S., Lin, N. N., Liu, L., Tsai, P. J ., and Kuo, J . S. (1995)
Lowered brain glutathione by diethylmaleate decreased the