Helvetica Chimica Acta – Vol. 95 (2012)
771
DMF (5 ml) was added MeI (0.10 ml, 1.53 · 10ꢀ3 mol). The mixture was stirred at r.t. during 30 min.
(EtO)3P (1.05 ml, 6.13 · 10ꢀ3 mol, 20 equiv.) was added, and the soln. was heated at 608 during 4 h. After
cooling to r.t., DMF was evaporated under high vacuum. The crude material was dissolved in CH2Cl2
(50 ml), then washed with H2O (50 ml). The org. phase was dried (Na2SO4), filtered, and concentrated.
The residue was chromatographed (SiO2; CH2Cl2/MeOH 97:3) to give 6 (0.14 g, 43%; pure on the basis
of TLC and 1H-NMR analysis).
From 25,26,27,28-Tetrahydroxy-5,11,17,23-tetrakis[(trimethylamino)methyl]calix[4]arene tetraiodide
(¼ [25,26,27,28-Tetrahydroxypentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3(28),4,6,9(27),10,12,15(26),
16,18,21,23-dodecaene-5,11,17,23-tetrayl]tetrakis(N,N,N-trimethylmethanaminium) Tetraiodide; 4). To a
soln. of 4 (4.77 g, 3.91 · 10ꢀ3 mol) in anh. DMF (45 ml) was added (EtO)3P (6.7 ml, 39.11 · 10ꢀ3 mol,
10 equiv.); the mixture was heated at 708 under Ar during 6 h. After cooling, DMF was evaporated under
high vacuum, and the residue was lyophilized from a cyclohexane suspension, then chromatographed
1
(SiO2; CH2Cl2/MeOH 97:3) to give 6 (3.21g, 81%; pure on the basis of TLC and H-NMR analysis).
From 5,11,17,23-Tetrakis(bromomethyl)-25,26,27,28-tetrahydroxycalix[4]arene (¼ 5,11,17,23-Tetra-
kis(bromomethyl)pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3(28),4,6,9(27),10,12,15(26),16,18,
21,23-dodecaene-25,26,27,28-tetrol; 5). To a soln. of 5 (0.15 g, 0.19 · 10ꢀ3 mol) in CH2Cl2 (5 ml) was added
(EtO)3P (0.13 ml, 0.75 · 10ꢀ3 mol, 4 equiv.); the mixture was refluxed during 6 h. After cooling to r.t., the
solvent was evaporated, and the residue was dried under vacuum to give an oil. An excess of pentane
(50 ml) was then added, and the oily material was triturated and sonicated. After 24 h, the resulting solid
that was formed was filtered off, washed with pentane, and dried under vacuum to give 6 (0.17 g, 89%).
White solid. M.p.: 139 – 1408. 1H NMR (400 MHz, CDCl3): 1.20 (t, J ¼ 7.1, 8 MeCH2O); 2.89 (d, J ¼ 21.2, 4
CH2P); 3.48 – 4.18 (br. ꢃqꢀ, AB, JAB ¼ 13.4, 4 ArCH2Ar); 3.79 (m, 8 MeCH2O); 6.96 (d, J ¼ 1.5, 8 arom. H);
10.04 (s, 4 OH). 13C NMR (100 MHz, CDCl3): 16.8 (d, J ¼ 5.9, MeCH2O); 32.0 (ArCH2Ar); 33.1 (d, J ¼
138.4, CH2P); 65.5 (d, J ¼ 16.6, MeCH2O); 125.4 (d, J ¼ 8.8, Cp); 128.6 (d, J ¼ 2.9, Co); 130.7 (d, J ¼ 6.6,
Cm); 148.2 (d, J ¼ 3.7, Cipso). ES-MS (pos.): 1047.33 ([M þ Na]þ), 1025.35 ([M þ H]þ), 997.32 ([M ꢀ Et þ
2 H]þ), 969.28 ([M ꢀ 2 Et þ 3 H]þ), 941.26 ([M ꢀ 3 Et þ 4 H]þ), 913.23 ([M ꢀ 4 Et þ 5 H]þ). ES-MS
(neg.): 1023.34 ([M ꢀ H]ꢀ), 885.29 ([M ꢀ (PO(OEt)2) ꢀ 2 H]ꢀ), 857.24 ([M ꢀ (PO(OEt)2) ꢀ Et ꢀ H]–),
811.18 ([M ꢀ (PO(OEt)2) ꢀ Et ꢀ EtO ꢀ 2 H]ꢀ), 783.13 ([M ꢀ (PO(OEt)2) ꢀ 2 Et ꢀ EtO ꢀ H]ꢀ), 747.25
([M ꢀ 2 (PO(OEt)2) ꢀ 3 H]ꢀ), 719.19 ([M ꢀ 2 (PO(OEt)2) ꢀ Et ꢀ 2 H]ꢀ), 673.17 ([M ꢀ 2
(PO(OEt)2) ꢀ Et ꢀ EtO ꢀ 3 H]ꢀ). Anal calc. for C48H68O16P4 (1024.94): C 56.25, H 6.69; found: C
56.30, H 6.54.
REFERENCES
[1] S. Cherenok, V. Kalchenko, Top. Heterocycl. Chem. 2009, 20, 229.
[2] N. Psychogios, J.-B. Regnouf-de-Vains, Tetrahedron Lett. 2002, 43, 7691.
[3] M. Mourer, N. Psychogios, G. Laumond, A.-M. Aubertin, J.-B. Regnouf-de-Vains, Bioorg. Med.
Chem. 2010, 18, 36.
[4] M. Almi, A. Arduini, A. Casnati, A. Pochini, R. Ungaro, Tetrahedron 1989, 45, 2177.
[5] T. Arimura, T. Nagasaki, S. Shinkai, T. Matsuda, J. Org. Chem. 1989, 54, 3766.
[6] Y. I. Rudzevich, A. B. Drapailo, V. L. Rudzevich, V. I. Miroshnichenko, V. I. Kalꢀchenko, I. V.
Smirnov, V. A. Babain, A. A. Varnek, G. Wipff, Russ. J. Gen. Chem. 2002, 72, 1736.
[7] O. Klimchuk, L. Atamas, S. Miroshnichenko, V. Kalchenko, I. Smirnov, V. Babain, A. Varnek, G.
Wipff, J. Inclusion Phenom. Macrocycl. Chem. 2004, 49, 47.
[8] Z.-T. Huang, G.-Q. Wang, L.-M. Yang, Y.-X. Lou, Synth. Commun. 1995, 25, 1109.
[9] I. Alam, S. K. Sharma, C. D. Gutsche, J. Org. Chem. 1994, 59, 3716.
[10] C. D. Gutsche, K. C. Nam, J. Am. Chem. Soc. 1988, 110, 6153.
[11] T.-D. Guo, Q.-Y. Zheng, L.-M. Yang, Z.-T. Huang, J. Inclusion Phenom. Macrocycl. Chem. 2000, 36,
327.
[12] C. Jaime, J. de Mendoza, P. Prados, P. Nieto, C. Sanchez, J. Org. Chem. 1991, 56, 3372.
[13] J. O. Magrans, J. de Mendoza, M. Pons, P. Prados, J. Org. Chem. 1997, 62, 4518.
Received October 21, 2011