Organic Letters
Letter
would lead to greater dipolar repulsive and steric repulsive
ACKNOWLEDGMENTS
■
interactions in the developing S 2 transition state, but these
N
This work was supported by a grant from the Midcareer
Research Program (370C-20160046) of the National Research
Foundation, Korea.
transition state destabilizing interactions would not be observed
for the same reaction at C . As a result, the C displacement
2
2
proceeded regioselectively.
Density functional theory (DFT) calculations were utilized
to elucidate the origin of the observed regioselectivity. The
REFERENCES
■
(
1) Kusaka, T.; Yamamoto, H.; Shibata, M.; Muroi, M.; Kishi, T.;
Mizuno, K. J. Antibiot. 1968, 21, 255.
reaction energy profile of the S 2 attack of the nucleophile (6-
N
chloropurine anion) was computed on the C and C positions
(2) (a) De Clercq, E.; Cools, M. Biochem. Biophys. Res. Commun.
1
2
1
985, 129, 306. (b) Marquez, V. E.; Lim, M. Med. Res. Rev. 1986, 6, 1.
c) De Clercq, E.; Bergstrom, D. E.; John, A. H.; Montgomery, J. A.
Antiviral Res. 1984, 4, 119. (d) De Clercq, E. Nat. Rev. Drug Discovery
002, 1, 13.
3) (a) Shealy, Y. F.; Clayton, J. D. J. Am. Chem. Soc. 1966, 88, 3885.
of the cyclic sulfate (see Figure 1S in SI). The nucleophilic
substitution steps are rate-determining, bearing the highest
energy barriers to the activation: 32.3 kcal/mol for the
(
2
(
substitution at C and 29.0 kcal/mol for the substitution at
1
C . The substitution at the 2′-position is favored by 3.3 kcal/
2
(b) Shealy, Y. F.; Clayton, J. D. J. Am. Chem. Soc. 1969, 91, 3075.
(c) Shealy, Y. F.; Thorpe, M. C.; Coburn, W. C., Jr.; Clayton, J. D.
Chem. Pharm. Bull. 1980, 28, 3114.
mol, which is in excellent agreement with the experimental
outcome where the C substituted product is the sole product.
2
(4) (a) Arita, M.; Adachi, K.; Ito, Y.; Sawai, H.; Ohno, M. J. Am.
To explain the energy preference shown in Figure 1S, fragment
analysis was also carried out. The distortion energy penalty for
the cyclic sulfate substrate in the transition state for C1-
substitution was +6.3 kcal/mol higher in energy than that for
Chem. Soc. 1983, 105, 4049. (b) Yoshikawa, M.; Okaichi, Y.; Cha, B.
C.; Kitagawa, I. Tetrahedron 1990, 46, 7459. (c) Wolfe, M. S.; Lee, Y.;
Bartlett, W. J.; Borcherding, D. R.; Borchardt, R. T. J. Med. Chem.
1
992, 35, 1782. (d) Madhavan, G. V.; Martin, J. C. J. Org. Chem. 1986,
C -substitution, which confirmed the preference on 2′-
2
51, 1287.
substitution (see Figure 2S in SI).
(5) (a) Madhavan, G. V. B.; McGee, D. P. C.; Rydzewski, R. M.;
Boehme, R.; Martin, J. C.; Prisbe, E. J. J. Med. Chem. 1988, 31, 1798.
(b) Yin, X.-Q.; Schneller, S. W. Tetrahedron Lett. 2005, 46, 7535.
Treatment of 20 with tert-butanolic ammonia followed by
deprotection with 67% aqueous TFA produced the final iso-
nucleoside (+)-2a.
The final compound (−)-2 was assayed for inhibitory activity
against AdoHcy hydrolase. As expected, it exhibited potent
inhibitory activity (IC50 = 0.37 μM).
(6) For a review of cyclic sulfites and cyclic sulfates, see: (a) Lohray,
B. B. Synthesis 1992, 1992, 1035. (b) Lohray, B. B.; Bhushan, V. Adv.
Heterocycl. Chem. 1997, 68, 89. (c) Byun, H.-S.; He, L.; Bittman, R.
Tetrahedron 2000, 56, 7051.
(7) (a) Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538.
In conclusion, enantiomerically pure (−)-6′-β-fluoro-arister-
omycin (2) was synthesized from D-ribose. The β-fluoro unit
was prepared by stereoselective electrophilic fluorination with a
readily available silyl enol ether. Our method provides a β-
fluorinated sugar, which can be extensively utilized for the
structure−activity relationship studies of fluorocarbocyclic
nucleosides. We also developed a regioselective synthesis of
(
b) Naik, S. D.; Chandra, G.; Sahu, P. K.; Kim, H.-R.; Qu, S.; Yoon, J.-
S.; Jeong, L. S. Org. Chem. Front. 2016, 3, 1472. (c) Lee, S.; Lee, S.;
Park, H. J.; Lee, S. K.; Kim, S. Org. Biomol. Chem. 2011, 9, 4580.
(
8) (a) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17,
630. (b) Song, G. Y.; Paul, V.; Choo, H.; Morrey, J.; Sidwell, R. W.;
Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2001, 44, 3985.
9) (a) Choi, W. J.; Park, J. G.; Yoo, S. J.; Kim, H. O.; Moon, H. R.;
Chun, M. W.; Jung, Y. H.; Jeong, L. S. J. Org. Chem. 2001, 66, 6490.
b) Moon, H. R.; Choi, W. J.; Kim, H. O.; Jeong, L. S. Tetrahedron:
1
(
(
+)-5′-β-fluoro-isoaristeromycin (2a) using cyclic sulfate
(
chemistry, whose displacement outcome was supported by
DFT calculations. It is believed that all chemistry employed in
this study can be extensively applied to the synthesis of
fluorinated carbocyclic nucleosides.
Asymmetry 2002, 13, 1189. (c) Mulamoottil, V. A.; Nayak, A.; Jeong, L.
S. Asian J. Org. Chem. 2014, 3, 748.
(
10) Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem. Soc.
001, 123, 7001.
11) (a) Hale, K. J.; Hough, L.; Manaviazar, S.; Calabrese, A. Org.
2
(
Lett. 2014, 16, 4838. (b) Hale, K. J.; Hough, L.; Manaviazar, S.;
Calabrese, A. Org. Lett. 2015, 17, 1738.
ASSOCIATED CONTENT
■
(
12) (a) Takano, S.; Ohkawa, T.; Ogasawara, K. Tetrahedron Lett.
988, 29, 1823. (b) Lee, J. A.; Kim, H. O.; Tosh, D. K.; Moon, H. R.;
Kim, S.; Jeong, L. S. Org. Lett. 2006, 8, 5081.
*
S
Supporting Information
1
Experimental procedures; copies of H, 13C, and 19
1
F
NMR spectra; and DFT energy calculation (PDF)
AUTHOR INFORMATION
■
*
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX