Scheme 1). Although the longer, dodecanoyl acyl chain at
sn-2 improved the lipophilicity of the analogue over com-
pounds with two hexanoyl chains, adding a second C12 linker
at sn-1 afforded a less-soluble analogue that did not exhibit
either improved micelle insertion or in vitro enzyme activity
(data not shown).
The key step was the modification of the headgroup of
intermediate 4 by transphosphatidylation, using Genzyme
PLD(P) and a designed “choline-like” primary alcohol 6,
prepared as shown in Scheme 2. Transphosphatidylation has
been exploited previously26-28 to generate PL analogues with
both natural and unnatural headgroups. In this case, the
headgroup remodeling allowed the installation of a phos-
phodiester linkage bearing an internal quaternary amine
similar to choline as well as a protected primary amine that
could be used for further conjugation reactions (7, Scheme
2). The primary amine was deprotected and allowed to react
with an activated ester of BODIPY-FL (Molecular Probes)
to give the fluorogenic PC analogue DDPB (Scheme 2).
Removal of the sn-2 ester of DDPB by cobra venom PLA2
gave lysoDDPB, a fluorogenic lysoPC analogue.
Mixed micelles containing DDPB or lysoDDPB in Triton
X-100 (reduced) were incubated with commercial PLDs from
various sources for 3 min in buffers near each enzyme’s pH
optimum. Over this period, DDPB (Figure 1a) gave robust
fluorescence increases with the enzyme used for its synthesis,
Genzyme PLD(P), and with scPLD. LysoDDPB (Supporting
Information, Figure S2), over 3 min, gave a signal compa-
rable to that of scPLD but only a very small response to
Genzyme PLD(P). Over 60 min (Figure 1b), DDPB mixed
micelles with HKD PLD from peanut, cabbage, and Strep-
(9) Zambonelli, C.; Roberts, M. F. Prog. Nucleic Acid Res. Mol. Biol.
2005, 79, 133-181.
(10) Gijsbers, R.; Ceulemans, H.; Stalmans, W.; Bollen, M. J. Biol. Chem.
2001, 276, 1361-1368.
Figure 1. Fluorescence evolution (λEx/λEm ) 500/530 nm) during
(a) 3 min incubation of DDPB mixed micelles with PLD from
various sources (blue ( ) peanut PLD; red 9 ) cabbage PLD;
yellow 2 ) Strep. PMF PLD; brown × ) Genzyme PLD(P); O )
scPLD), (b) 60 min incubation of DDPB mixed micelles with PLD
and PLA2 from various sources (blue ( ) peanut PLD; red 9 )
cabbage PLD; brown 2 ) Strep. PMF PLD; green × ) cobra
venom PLA2; O ) bee venom PLA2), and (c) 3 min incubation of
DDPB or lysoDDPB mixed micelles with PC-PLC or PI-PLC
from B. cereus or C. perfringens (red 9 ) B. cereus PC-PLC +
DDPB; blue 2 ) B. cereus PC-PLC + lysoDDPB; ) ) C.
perfingens PC-PLC + DDPB; orange b ) C. perfringens PC-
PLC + lysoDDPB; brown + ) B. cereus PI-PLC + DDPB; green
rectangle ) B. cereus PI-PLC + lysoDDPB).
(11) Stefan, C.; Jansen, S.; Bollen, M. Trends Biochem. Sci. 2005, 30,
542-550.
(12) Jiang, X.; Gutowski, S.; Singer, W. D.; Sternweis, P. C. Methods
Enzymol. 2002, 345, 328-334.
(13) Xie, Y.; Meier, K. E. Methods Enzymol. 2002, 345, 294-305.
(14) Mezna, M.; Lawrence, A. J. Anal. Biochem. 1994, 218, 370-376.
(15) Kinkaid, A. R.; Wilton, D. C. Biochem. Soc. Trans. 1997, 25, S595.
(16) Hergenrother, P. J.; Haas, M. K.; Martin, S. F. Lipids 1997, 32,
783-788.
(17) Petersen, G.; Chapman, K. D.; Hansen, H. S. J. Lipid Res. 2000,
41, 1532-1538.
(18) Zhou, M.; Zhang, C.; Haugland, R. P. Proc. SPIE 2000, 3926, 166-
171.
(19) Wilton, D. C. Biochem. J., Part 1 1991, 276, 129-133.
(20) Umezu-Goto, M.; Kishi, Y.; Taira, A.; Hama, K.; Dohmae, N.;
Takio, K.; Yamori, T.; Mills, G. B.; Inoue, K.; Aoki, J.; Arai, H. J. Cell
Biol. 2002, 158, 227-33.
(21) Gijsbers, R.; Aoki, J.; Arai, H.; Bollen, M. FEBS Lett. 2003, 538,
60-64.
(22) Cha, J.; Lee, J.; Koh, E.-H.; Choi, M.-U. Bull. Korean Chem. Soc.
1994, 15, 1001-1003.
tomyces PMF (BIOMOL) evolved fluorescence to a degree
approaching that observed in 3 min with scPLD, but bee
and cobra venom sPLA2 did not generate a fluorescent signal
over the same time period, consistent with the retention of
an intramolecular quencher even after cleavage of the sn-2
quenched acyl chain. A longer incubation time with lyso-
DDPB mixed micelles (Supporting Information, Figure S3)
only amplified fluorescence from Genzyme PLD(P). These
results support the idea that lysophospholipids are substrates
for scPLD14 but are not substrates for HKD PLD.29,30
(23) Kurioka, S.; Matsuda, M. Anal. Biochem. 1976, 75, 281-289.
(24) Takakusa, H.; Kikuchi, K.; Urano, Y.; Sakamoto, S.; Yamaguchi,
K.; Nagano, T. J. Am. Chem. Soc. 2002, 124, 1653-1657.
(25) Ferguson, C. G.; Bigman, C. S.; Richardson, R. D.; van Meeteren,
L. A.; Moolenaar, W. A.; Prestwich, G. D. Org. Lett. 2006, 8, 2023-2026.
(26) D’Arrigo, P.; de Ferra, L.; Piergianni, V.; Selva, A.; Servi, S.; Strini,
A. J. Chem. Soc., Perkin Trans. 1 1996, 21, 2651-2656.
(27) Wang, P.; Schuster, M.; Wang, Y.-F.; Wong, C.-H. J. Am. Chem.
Soc. 1993, 115, 10487-10491.
(28) Pisch, S.; Bornscheuer, U. T.; Meyer, H. H.; Schmid, R. D.
Tetrahedron 1997, 53, 14627-14634.
Org. Lett., Vol. 8, No. 12, 2006
2577