10.1002/ejoc.201700501
European Journal of Organic Chemistry
COMMUNICATION
was stirred for 24 h at 60 °C, and then quenched by NH4F aq (10%, 10
mL). The mixture was extracted with diethyl ether (10 mL x 3). The
collected organic layers were dried over MgSO4, and evaporation of
volatiles gave the crude product, which was analyzed by 1H NMR
spectroscopy to decide diastereomeric ratio. The crude product was
purified by column chromatography to give the product.
[5]
a) S. Bera, S. K. Das, T. Saha, G. Panda, Tetrahedron Lett. 2015, 56,
146. b) H. Nemoto, N. Matsuhashi, M. Imaizumi, M. Nagai, K. Fukumoto
J. Org. Chem. 1990, 55, 5625. c) D. Taub, R. D. Hoffsommer, H. L. Slates,
N. L. Wendler J. Am. Chem. Soc. 1958, 80, 4435. d) G. V. Pillai, A. J.
Smith, P. A. Hunt, P. B. Simpson Biochem. Pharmacol. 2004, 68, 819.
a) N. Kumagai, S. Matsunaga, M. Shibasaki, Org. Lett. 2001, 3, 4251. b)
[6]
[7]
S. Harada, N. Kumagai, T. Kinoshita, S. Matsunaga, M. Shibasaki, J. Am.
Chem. Soc. 2003, 125, 2582. c) Y.-Z. Hua, M.-M. Liu, P.-J. Huang, X.
Song, M.-C. Wang, J.-B. Chang, Chem. Eur. J. 2015, 21, 11994.
The stoichiometric amount of tin amide promoted anti-selective direct
Michael addition of α-alkoxyketones to enone. a) I. Shibata, K. Yasuda,
Y. Tanaka, M. Yasuda, A. Baba, J. Org. Chem. 1998, 63, 1334. The
stoichiometric amount of lithium diisopropylamide promoted syn-
selective direct Michael addition of α-alkoxyacetate to enone. b) S.
Kanemasa, M. Nomura, E. Wada, Chem. Lett. 1991, 1735.
Acknowledgements
This work was supported by the JSPS KAKENHI Grant Numbers
JP15H05848 (in Middle Molecular Strategy) and JP16K05719. Y.N. thanks
the Frontier Research Base for Global Young Researchers at Osaka
University, a program of MEXT. We thank Dr. Nobuko Kanehisa for
valuable advice regarding X-ray crystallography. Thanks are due to the
Analytical Instrumentation Facility, Graduate School of Engineering,
Osaka University, for assistance in obtaining the MS spectra.
[8]
[9]
Enantioselective direct Michael addition of α-alkoxyketones to
nitroalkenes was reported. a) H. Huang, E. N. Jacobsen, J. Am. Chem.
Soc. 2006, 128, 7170. catalytic cycloaddition of α-hydroxyketones with
dicyanoalkenes including anti-selective Michael addition step of α-
hydroxyketones to dicyanoalkenes was reported. b) S. Tsunoi, Y. Seo,
Y. Takano, I. Suzuki, I. Shibata Org. Biomol. Chem. 2016, 14, 1707.
Intramolecular Direct catalytic Michael addition of α-oxyketone moiety to
enone moiety a) J. christensen, Ł. Albrecht, K. A. Jørgensen, Chem.
Asian. J. 2013, 8, 648. b) Y. Liu, A. Lu, K. Hu, Y. Wang, H. Song, Z. Zhou,
C. Tang, Eur. J. Org. Chem. 2013, 4836. c) D. J. B. Antúnez, M. D.
Greenhalgh, C. Fallan, A. M. Z. Slawin, A. D. Smith, Org. Biomol. Chem.,
2016, 14, 7268.
Keywords: Michael addition • tin • samarium • methoxyketones
• diastereoselectivity
References:
[10] a) A. Yanagisawa, S. Takeshita, Y. Izumi, K. Yoshida, J. Am. Chem. Soc.
2010, 132, 5328. b) A. Yanagisawa, T. Satou, A. Izumiseki, Y. Tanaka,
M. Miyagi, T. Arai, K. Yoshida, Chem. Eur. J. 2009, 15, 11450.
[11] The configuration of 3ea was determined by X-ray structural analysis,
see supporting information.
[1]
[2]
P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis,
Pergamon, Oxford, 1992.
For selected reviews, see: a) J. Christoffers, Eur. J. Org. Chem. 1998, 7,
1259. b) M. Sibi, S. Manyem, Tetrahedron, 2000, 56, 8033. c) N. Krause,
A. Hoffman-Röder, Synthesis 2001, 171. d) J. Christoffers, A. Baro,
Angew.Chem. Int. Ed. 2003, 42, 1688; e) R. Ballini, G. Bosica, D. Fiorini,
A. Palmieri, M. Petrini, Chem. Rev. 2005, 105, 933. f) J. Christoffers, G.
Koripelly, A. Rosiak, M. Rössle, Synthesis 2007, 1279. g) S. B. Tsogoeva,
Eur. J. Org. Chem. 2007, 1701. h) S. Sulzer-Mossé, A. Alexakis, Chem.
Commun. 2007, 3123. i) A. Alexakis, J. E. Bäckvall, N. Krause, O.
Pamies and M. Diéguez, Chem. Rev. 2008, 108, 2796. j) H. Pellissier,
Adv. Synth. Catal. 2016, 358, 2194.
[12] The transmetalation between Bu3SnOMe and Sm(OTf)3 smoothly
proceeded at ambient temperature and the process was observed by 13
NMR, see supporting information.
C
[13] The coordination of alkoxyketone by samarium methoxide was observed
by 13C NMR, see, supporting information.
[14] When Me3SnOMe was used instead of Bu3SnOMe, the anti-selectivity
was quite changed (75% yield, anti/syn = 77/23). This result suggested
that the tin enolate generated in situ acted as a reactive species of
Michael addition step, see supporting information.
[3]
Selected examples for Michael additions of 1,3-dicarbonyl compounds to
enones, see: a) R. Helder, H. Wynberg, Tetrahedron Lett. 1975, 16, 4057.
b) K. Hermann, H. Wynberg, J. Org. Chem. 1979, 44, 2238. c) D. J. Carm,
G. D. Y. Sogah, J. Chem. Soc. Chem. Commun. 1981, 625. d) H. Brunner,
B. Hammer, Angew. Chem. 1984, 96, 305; Angew. Chem. Int. Ed. 1984,
23, 312. e) M. Yamaguchi, T. Shiraishi, M. Hirama, Angew. Chem. 1993,
105, 1243; Angew. Chem. Int. Ed. 1993, 32, 1176. f) H. Sasai, T. Arai, M.
Shibasaki, J. Am. Chem. Soc. 1994, 116, 1571. g) H. Sasai, T. Arai, Y.
Satow, K. N. Houk, M. Shibasaki, J. Am. Chem. Soc. 1995, 117, 6194.
h) M. Yamaguchi, T. Shiraishi, M. Hirama, J. Org. Chem. 1996, 61, 3520.
i) T. Arai, H. Sasai, K. Aoe, K. Okamura, T. Date, M. Shibasaki, Angew.
Chem. 1996, 108, 103; Angew. Chem. Int. Ed. 1996, 35, 104. j) Y. S. Kim,
S. Matsunaga, J. Das, A. Sekine, T. Oshima, M. Shibasaki, J. Am. Chem.
Soc. 2000, 122, 6506. k) M. Nakajima, Y. Yamaguchi, S. Hashimoto,
Chem. Commun. 2001, 1596. l) Y. Hamashima, D. Hotta, M. Sodeoka, J.
Am. Chem. Soc. 2002, 124, 11240. m) K. Majima, R. Takita, A. Okada,
T. Oshima, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 15837. n) N.
Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. 2003, 115, 685;
Angew. Chem. Int. Ed. 2003, 42, 661. o) N. Halland, T. Hansen, K. A.
Jørgensen, Angew. Chem. 2003, 115, 5105; Angew. Chem. Int. Ed. 2003,
42, 4955. p) K. R. Kundsen, C. E. T. Mitchell, S. V. Ley, Chem. Commun.
2006, 66.
[15] The reaction of tributyltin enolate derived from alkoxyketone with enone
generates the anti-product. see. ref. 7a.
[16] D. A. Oare, C. H. Heathcock, J. Org. Chem. 1990, 55, 157.
[17] Selected example of Michael additions of tin enolates, see: a) I. Shibata,
M. Nishio, A. Baba, H. Matsuda, J. Chem. Soc. Chem. Commun. 1983,
1067. b) I Shibata, Y. Mori, H. Yamasaki, A. Baba, H. Matsuda,
Tetrahedron Lett. 1993, 34, 6567. c) M. Yasuda, N. Ohigashi, I. Shibata,
A. Baba, J. Org. Chem. 1999, 64, 2180. d) M. Yasuda, N. Ohigashi, A.
Baba, Chem. Lett. 2000, 1266. e) M. Yasuda, K. Chiba, N. Ohigashi, Y.
Katoh, A. Baba, J. Am. Chem. Soc. 2003, 125, 7291.
[18] Y.-Q. Yang, Z. Chai, H.-F. Wang, X.-K. Chen, H.-F. Cui, C.-W. Zheng, H.
Xiao, P. Li, G. Zhao, Chem. Eur. J. 2009, 15, 13295.
[19] The configuration of major isomer was determined by X-ray structural
analysis of 9ba.
[20]
The reaction of 1b with 2a in EtCN at 60 °C for 24 h gave the
corresponding product 3ab (91% yield, anti/syn = 93/7).
[4]
a) Y. Hamashima, D. Hotta, M. Sodeoka, J. Am. Chem. Soc. 2002, 124,
11240. b) Y. Hamashima, D. Hotta, N. Umebayashi, Y. Tsuchida, M.
Sodeoka, Adv. Synth. Catal. 2005, 347, 1576. c) J. Yang, W. Li, Z. Jin,
X. Liang, J. Ye, Org. Lett. 2010, 12, 5218. d) F. Wu, R. Hong, J. Khan, X.
Liu, L. Deng, Angew. Chem. Int. Ed. 2006, 45, 4301. e) N. R. Cichowicz,
W. Kaplan, Y. Khomutnyk, B. Bhattarai, Z. Sun, P. Nagorny, J. Am. Chem.
Soc. 2015, 137, 14341.
This article is protected by copyright. All rights reserved.