3876
M. Nasr-Esfahani, M. Moghadam, and G. Valipour
relationship of 1,4-dihydropyridines as antitubercular agents. J. Med. Chem.
002, 45, 4858–4867.
2
4
. (a) McCormack, J. G.; Westergaard, N.; Kristiansen, M.; Brand, C. L.;
Lau, J. Pharmacological approaches to inhibit endogenous glucose production
as a means of anti-diabetic therapy. Curr. Pharm. Des. 2001, 7, 1451–1474; (b)
Ogawa, A. K.; Willoughby, C. A.; Raynald, B.; Ellsworth, K. P.; Geissler,
W. M.; Myer, R. W.; Yao, J.; Georgianna, H.; Chapman, K. T.
Glucose-lowering in a db=db mouse model by dihydropyridine diacid glyco-
gen phosphorylase inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 3405–3408.
. (a) Boer, R.; Gekeler, V. Chemosensitizers in tumor therapy: New
compounds promise better efficacy. Drugs Fut. 1995, 20, 499–509; (b)
Sabitha, G.; Kiran Kumar Reddy, G. S.; Srinivas Reddy, C.; Yadav, J. S.
A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at
ambient temperature. Tetrahedron Lett. 2003, 44, 4129–4131.
5
6
. (a) Katsuki, T. Mn–salen catalyst, competitor of enzymes, for asymmetric
epoxidation. J. Mol. Catal. A: Chem. 1996, 113, 87–107; (b) Katsuki, T. Cat-
alytic asymmetric oxidations using optically active (salen) manganese(III)
complexes as catalysts. Coord. Chem. Rev. 1995, 140, 189–214.
7. Ortiz de Montellano, P. R. Cytochrome P-450: Structure, Mechanism, and
Biochemistry, 2nd ed.; Plenum Press: New York, 1995.
8
. (a) Routier, S. B.; Bernier, J. L.; Catteau, M. P.; Bailly, C. Highly preferential
cleavage of unpaired guanines in DNA by a functionalized salen–nickel com-
plex. Bioorg. Med. Chem. Lett. 1997, 7, 63–66; (b) Muller, J. G.; Paikoff, S. J.;
Rokita, S. E.; Burrow, C. J. DNA modification promoted by water-soluble
nickel(II) salen complexes: A switch to DNA alkylation. J. Inorg. Biochem.
1994, 54, 199–206; (c) Samide, M. J.; Peters, D. G. Electrochemical reduction
of copper(II) salen at carbon cathodes in dimethylformamide. J. Electroanal.
Chem. 1998, 443, 95–102; (d) Mirkhani, V.; Tangestaninejad, S.; Moghadam,
M.; Moghbel, M. Rapid and efficient oxidative decarboxylation of carboxylic
acids with sodium periodate catalyzed by manganese(III) Schiff base com-
plexes. Bioorg. Med. Chem. 2004, 12, 903–906; (e) Puglisi, A.; Tabbi, G.;
Vecchio, G. Bioconjugates of cyclodextrins of manganese salen-type ligand
with superoxide dismutase activity. J. Inorg. Biochem. 2004, 98, 969–976.
. (a) Palucki, M.; McCormick, G. J.; Jacobsen, E. N. Low temperature
asymmetric epoxidation of unfunctionalized olefins catalyzed by (salen)-
Mn(III) complexes. Tetrahedron Lett. 1995, 36, 5457–5460; (b) Adam, W.;
Jeco, J.; Levai, A.; Nemes, C.; Patonay, T.; Sebok, P. Enantioselective epox-
idation of 2,2-dimethyl-2H-chromenes by dimethyldioxirane and Jacobsen’s
Mn(III) salen catalysts. Tetrahedron Lett. 1995, 36, 3669–3672; (c) Linker,
T. The Jacobsen-Katsuki epoxidation and its controversial mechanism.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2060–2062; (d) Irie, R.; Hashihayata,
T.; Katasuki, T.; Akita, M.; Moro-oka, M. X-ray structures of chiral (sale-
n)manganese(III) complexes: Proof of pliability of the salen ligand. Chem.
Lett. 1998, 1041–1042; (e) Hamada, T.; Fukuda, H.; Katsuki, T. Mechanism
of one oxygen atom transfer from oxo (salen)manganese(V) complex to ole-
fins. Tetrahedron 1996, 52, 515–530.
9