Ph yP sl ei c aa sl eC hd eo mni os ttr ya dC jhu es mt mi c aa lr Pg hi ny ss ics
Page 8 of 9
ARTICLE
Journal Name
crystallographic information has been deposited with Program through the National ResearchDOFoI:u10n.1d0a3t9io/Cn9CoPf0K64o6r6eDa
Cambridge Crystallographic Data Centre and signed to CCDC (NRF), funded by the Ministry of Education (NRF-
code 1968408 for M.
2017R1C1B1010736).
Spectroelectrochemical (SEC) measurements
Notes and references
Measurements were carried out using a custom-made, optically
transparent, thin-layer electrochemical cell (light pass length =
1
mm) equipped with a platinum mesh working electrode and a
1
2
M. R. Wasielewski, Chem. Rev., 1992, 92, 435-461.
D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 1993,
platinum coil counter electrode, and an SCE was used as the
reference electrode. Potentials were applied using
commercial electrochemical analyzer.
2
6, 198-205.
a
3
4
5
6
7
8
9
D. W. Cho, M. Fujitsuka, A. Sugimoto, U. C. Yoon, P. S. Mariano
and T. Majima, J. Phys. Chem. B, 2006, 110, 11062-11068.
M. Ito, E. Ito, M. Hirai and S. Yamaguchi, J. Org. Chem., 2018,
Femtosecond transient absorption (fs-TA) measurements
8
3, 8449-8456.
H. Liu, Q. Bai, L. Yao, H. Zhang, H. Xu, S. Zhang, W. Li, Y. Gao,
J. Li and P. Lu, Chem. Sci., 2015, 6, 3797-3804.
M. Ahn, M.-J. Kim and K.-R. Wee, J. Org. Chem., 2019, 84,
Sub-picosecond time-resolved absorption spectra were
collected using pump–probe transient absorption
a
spectroscopy system (Ultrafast Systems, Helios). The pump light
was generated using a regenerative, amplified titanium
sapphire laser system (Spectra Physics, Spitfire Ace, 1 kHz)
pumped by a diode-pumped Q-switched laser (Spectra Physics,
Empower). Seed pulse was generated using a titanium sapphire
laser (Spectra Physics, MaiTai SP). The pulses (290 and 340 nm)
generated by an optical parametric amplifier (Spectra Physics,
1
2050-12057.
S. K. Panja, N. Dwivedi and S. Saha, RSC Adv., 2016, 6, 105786-
105794.
R. Kurata, A. Ito, M. Gon, K. Tanaka and Y. Chujo, J. Org. Chem.,
2
017, 82, 5111-5121.
H. S. Nalwa, in Handbook of Organic Conductive Molecules
and Polymers, ed. H. S. Nalwa, Wiley, Chichester, U.K., 1997,
vol. 4, pp. 261-363.
TOPAS prime) were used as excitation pulse. A white light 10 D. Jiang, S. Chen, Z. Xue, Y. Li, H. Liu, W. Yang and Y. Li, Dyes
Pigm., 2016, 125, 100-105.
continuum pulse, (generated by focusing the residual of the
1
1
1 K. A. Willets, P. R. Callis and W. Moerner, J. Phys. Chem. B,
fundamental light to a thin Sapphire crystal after the controlled
optical delay) was used as a probe beam and directed at the
sample cell with 2.0 mm of the optical path and detected using
2
004, 108, 10465-10473.
2 B. Qiu, Y. Zeng, L. Cao, R. Hu, X. Zhang, T. Yu, J. Chen, G. Yang
and Y. Li, RSC Adv., 2016, 6, 49158-49163.
a CCD detector installed in the absorption spectroscope. The 13 K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y.
Murata, C. Adachi and H. Kaji, Angew. Chem. Int. Ed., 2015,
pump pulse was chopped by
synchronized to one-half of the laser repetition rate, so as to
produce a pair of spectra (i.e., with and without the pump),
a mechanical chopper
5
4, 15231-15235.
1
4 K.-R. Wee, H.-C. Ahn, H.-J. Son, W.-S. Han, J.-E. Kim, D. W. Cho
and S. O. Kang, J. Org. Chem., 2009, 74, 8472-8475.
from which absorption change induced by the pump pulse was 15 Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
estimated.
T. Kajita and M. a. Kakimoto, Adv. Funct. Mater., 2008, 18,
84-590.
6 Y. Ooyama, Y. Hagiwara, Y. Oda, T. Mizumo, Y. Harima and J.
Ohshita, New J. Chem., 2013, 37, 2336-2340.
7 K.-R. Wee, B. D. Sherman, M. K. Brennaman, M. V. Sheridan,
A. Nayak, L. Alibabaei and T. J. Meyer, J. Mater. Chem. A, 2016,
4, 2969-2975.
8 B. D. Sherman, M. V. Sheridan, K.-R. Wee, S. L. Marquard, D.
Wang, L. Alibabaei, D. L. Ashford and T. J. Meyer, J. Am. Chem.
Soc., 2016, 138, 16745-16753.
5
Density functional theory (DFT) calculations
1
1
DFT calculations were performed by using Gaussian’16 software
package. Full geometry optimizations in ground states were
performed using the B3LYP functional and the 6-31G (d,p) basis
set for all atoms. Excitation energies and oscillator strengths for
the lowest 100 singlet–singlet transitions for optimized
geometries in the ground state were obtained using time-
dependent DFT (TD-DFT) calculations using the same basis set
1
1
9 S. Delmond, J.-F. Létard, R. Lapouyade and W. Rettig, J.
Photochem. Photobiol. A, 1997, 105, 135-148.
and functional as for the ground state. All Isodensity plots of 20 W. Ma, Y. Wu, J. Han, D. Gu and F. Gan, J. Mol. Struct., 2005,
7
52, 9-13.
frontier orbitals were visualized using Chem3D Ultra and
GaussView software. DFT/TD-DFT calculation results for
terphenyl backbone-based donor--acceptor (D--A) dyads are
described in more detail in SI.
2
2
1 Principle of Fluorescence Spectroscopy, ed. J. R. Lakowicz,
Springer, Singapore, Corrected 3rd, 2010, ch. 9.
2 V. Novakova, P. Hladík, T. Filandrová, I. Zajícová, V. Krepsová,
M. Miletin, J. Lenčo and P. Zimcik, Phys. Chem. Chem. Phys.,
2
014, 16, 5440-5446.
2
2
2
3 S.-Y. Kim, Y.-J. Cho, A.-R. Lee, H.-j. Son, W.-S. Han, D. W. Cho
and S. O. Kang, Phys. Chem. Chem. Phys., 2017, 19, 426-435.
4 Principle of Fluorescence Spectroscopy, ed. J. R. Lakowicz,
Springer, Singapore, Corrected 3rd, 2010, ch. 8.
Conflicts of interest
There are no conflicts to declare.
5 Y.-J. Cho, A.-R. Lee, S.-Y. Kim, M. Cho, W.-S. Han, H.-J. Son, D.
W. Cho and S. O. Kang, Phys. Chem. Chem. Phys., 2016, 18,
2
2921-22928.
Acknowledgements
2
2
6 J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J.
Qin and Z. Li, Adv. Funct. Mater., 2013, 23, 2329-2337.
7 J. Jia and H. Zhao, New J. Chem., 2019, 43, 2231-2237.
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins