S. Tu et al. / Bioorg. Med. Chem. Lett. 14 (2004) 1533–1536
1535
(70–93%). All the reactions were followed by TLC and
References and notes
the experiments were replicated in order to ensure the
reproducibility. The main results for the synthesis of
these compounds are listed in Table 1. Therefore, these
reactions have the advantage of short reaction time,
good yields, convenient work up procedures and being
environmentally friendly.13 The mechanisms are similar
to that reported in earlier work.14
1. (a) Bossert, F.; Meyer, H.; Wehinger, E. Angew. Chem.,
Int. Ed. 1981, 93, 755. (b) Stout, D. M.; Meyers, A. I.
Chem. Rev. 1982, 82, 223. (c) Janis, R. A.; Silver, P. J.;
Triggle, D. J. Adv. Drug Res. 1987, 16, 309. (d) Bossert,
F.; Vater, W. Med. Res. Rev. 1989, 9, 291. (e) Martın, N.;
Seoane, C. Quim. Ind. 1990, 36, 115. (f) Marchalin, S.;
Chudik, M.; Mastihuba, V.; Decroix, B. Heterocycles
1998, 48, 1943. (g) Achiwa, K.; Kato, T. Curr. Org. Chem.
1999, 3, 77.
These new classes of compounds are interesting new
lead compounds for biological activity evaluation. This
work is in progress in our laboratories.
2. (a) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1. (b)
Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223. (c)
Cherng, Y. J. Tetrahedron 2002, 58, 4931.
3. (a) Dubur, G. J.; Veveris, M. M.; Weinheimer, G.; Bise-
nieks, E. A.; Makarova, N. R.; Kimenis, A. A.; Uldrikis,
J. R.; Lukevics, E. J.; Dooley, D.; Osswald, H. Arzneim.-
Forsch: Drug Res. 1989, 39, 1185. (b) Klusa, V. Drugs
Future 1995, 20, 135.
4. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk,
M. W.; Howlett, S. E.; Knauss, E. E. J. Med. Chem. 1995,
38, 2851.
5. (a) Burkhalter, J. H.; Edgerton, W. H. J. Am. Chem. Soc.
1951, 73, 4837. (b) Bray, P. G.; Ward, S. A. Pharmacology
& Therapeutics 1998, 77, 1. (c) Sharad, S. D.; Robert,
E. S.; Michael, A. Toxicon 1997, 35, 433. (d) Meilin, G.;
Tonglan, N.; Laychoo, T. A.; Kunnika, K.; Prapon, W.
European Journal of Pharmaceutical Sciences 1998, 6, 1 9.
6. Ochoa, E.; Suarez, M.; Verdecia, Y.; Pita, B.; Martın, N.;
Quinteiro, M.; Seoane, C.; Soto, J. L.; Duque, J.; Pomes,
R. Tetrahedron 1998, 54, 12409.
7. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd,
D. M.; Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med.
Chem. 1991, 34, 806. (b) Rovnyak, G. C.; Atwal, K. S.;
Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas,
J. Z.; O’Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med.
Chem. 1992, 35, 3254. (c) Grover, G. J.; Dzwonczyk, S.;
Mcmullen, D. M.; Normadin, A. M.; Parham, C. S.;
Slenph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol.
1995, 26, 289.
8. (a) Khurana, J. M.; Maikap, G. C.; Mehta, S. Synthesis
1990, 731. (b) Matsumoto, H.; Arai, T.; Takahashi, M.;
Ashizawa, T.; Nakano, T.; Nagai, Y. Bull. Chem. Soc.
Jpn. 1983, 56, 3009. (c) Nakano, T.; Takahashi, M.; Arai,
T.; Seki, S.; Matsumoto, H.; Nagai, Y. Chem. Lett 1982,
613.
9. (a) Chorvat, R. J.; Rorig, K. J. J. Org. Chem. 1988, 53,
5779. (b) Kappe, C. O.; Fabian, W. M. F. Tetrahedron
1997, 53, 2803. (c) Kappe, C. O. Tetrahedron 1993, 49,
6937.
10. (a) Loupy, A.; Philippon, N.; Pigeon, P.; Galond, H.
Heterocycles 1991, 32, 1947. (b) Shuj, K.; Minoru, N.;
Kazuichi, T. J. Heterocycl. Chem. 1984, 24, 1243. (c)
Rodrıguez, H.; Suarez, M.; Rolando, P.; Petıt, A.; Loupy,
A. Tetrahedron Lett. 2003, 44, 3709.
11. (a) Tu, S. J.; Wei, Q. H.; Ma, H. R.; Shi, D. Q.; Gao, Y.;
Cui, G. Y. Synth. Commun. 2001, 17, 2657. (b) Tu, S. J.;
Deng, X.; Shi, D. Q.; Gao, Y.; Feng, J. C. Chinese Journal
of Chemistry 2001, 19, 714. (c) Tu, S. J.; Zhou, J. F.; Cai,
P. J.; Wang, H.; Feng, J. C. Synth. Commun. 2001, 24,
3729. (d) Tu, S. J.; Lu, Z. S.; Shi, D. Q.; Yao, C. S.; Gao,
Y.; Guo, C. Synth. Commun. 2002, 14, 2181.
The structures of these compounds are established by
spectroscopic and analytical data. The IR spectra of
compound 5 show the NH stretching at 3200 and 3100
cmꢀ1 region. The 1H NMR spectra of compound 5
show the NH proton absorption at 9.84 ppm. The two
protons at C-3 appear at 2.39–2.93 ppm and form a
part of an ABX system which was confirmed by the
appearance of a doublet of doublets at 4.01–4.08 ppm
corresponding to the proton at C-4 split by coupling
0
with the protons on C-3 (J3,4=1.9 and J3 ,4=7.9 Hz).
1
The H NMR spectra of compound 8 show the NH
proton at 10.05 ppm. The two protons on C-3
appear at 2.18–2.89 ppm and form a part of an
ABX system which was confirmed by a doublet of
doublets at 4.06–4.08 ppm corresponding to the proton
on C-4 split by coupling with the protons on C-3
0
(J3,4=1.1 and J3 ,4=8.4 Hz). The two protons on C-6
appear as an AB system, with a couping constant
ꢁ15.6 Hz, indicating that these two protons are not
equivalent.
The IR of 9 shows the OH group at around 3225 cmꢀ1
and the two carbonyl groups at 1667 and 1660 cmꢀ1
.
Meanwhile, the 1H NMR spectrum of 9c shows the OH
proton at 10.73 ppm.
1
The IR and H NMR of compounds 3, 4, 6 and 7 are
consistent with the respective structures, and these
compounds showed good elemental analysis results.
In summary, keeping in view the utility of MWI and the
pharmacological importance of the above-mentioned
heterocycles, we have synthesized a series of new
bifunctional 1,4-DHPs derivatives using MWI in order
to provide a facile, rapid, efficient, and environmentally
friendly method. These compounds may show interesting
and unique properties.
Acknowledgements
We thank the National Natural Science Foundation
of China (No. 20372057), Natural Science Foundation of
the Jiangsu Province (No. BK2001142), the Natural
Science Foundation of Jiangsu Education Department
(No. 01KJB150008) and the Key Laboratory of
Chemical Engineering & Technology of the Jiangsu
Province Open Foundation (No. KJS02060) for financial
support.
12. Pelle, L.; Jason, T.; Bernard, W.; Jacob, W. Tetrahedron
2001, 57, 9225.
13. The general procedure is represented as bellow: A dry
flask (25 mL) was charged with m-phenylenedialdehyde
(2 mmol) or p-phenylenedialdehyde (2 mmol), corres-
ponding 2 and 3 (except 6) in proper ratio, glycol (2 mL),
proper catalyst (for 6, potassium hydrogen sulfate (2