S. Zhu et al. / Journal of Catalysis 303 (2013) 70–79
[7] S. Zhu, Y. Zhu, S. Hao, L. Chen, B. Zhang, Y. Li, Catal. Lett. 142 (2012) 267.
79
5. Conclusions
[8] Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal.
B: Environ. 105 (2011) 117.
It has been demonstrated that the B2O3 dopant can substan-
tially interact with copper species, induce the formation of cupric
phyllosilicate, and generate surface defects, which can be instru-
mental in preventing the aggregation of Cu nanoparticles and pro-
moting the dispersion of copper species upon heat treatment and
reaction.
Addition of suitable B2O3 to Cu/SiO2 catalyst pronouncedly en-
hanced the activity, 1,2-PDO selectivity, and stability for glycerol
hydrogenolysis. Among the catalysts tested, 3CuB/SiO2 afforded
the best catalytic performance, up to complete conversion with
98.0% 1,2-PDO selectivity. The close linear relationship between
1,2-PDO yield and copper surface area revealed that the active Cu
surface area was predominantly responsible for the catalytic
behavior of glycerol hydrogenolysis. Moreover, glycerol hydrogen-
olysis was structure-sensitive, as corroborated by the strong corre-
lation between TOF value with Cu particle size.
[9] F. Wang, J.L. Dubois, W. Ueda, J. Catal. 268 (2009) 260.
[10] L. Zhang, A.M. Karim, M.H. Engelhard, Z. Wei, D.L. King, Y. Wang, J. Catal. 287
(2012) 37.
[11] J. Deutsch, A. Martin, H. Lieske, J. Catal. 245 (2007) 428.
[12] S. Zhu, Y. Zhu, X. Gao, T. Mo, Y. Zhu, Y. Li, Bioresour. Technol. 130 (2013) 45.
[13] M.A. Dasari, P.P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes, Appl. Catal. A: Gen. 281
(2005) 225.
[14] E.S. Vasiliadou, E. Heracleous, I.A. Vasalos, A.A. Lemonidou, Appl. Catal. B:
Environ. 92 (2009) 90.
[15] Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige, J. Catal. 272 (2010) 191.
[16] I. Gandarias, P.L. Arias, J. Requies, M.E. Doukkali, M.B. Güemez, J. Catal. 282
(2011) 237.
[17] M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, ChemSusChem 4
(2011) 1143.
[18] N.D. Kim, J.R. Park, D.S. Park, B.K. Kwak, J. Yi, Green Chem. 14 (2012) 2638.
[19] S. Xia, R. Nie, X. Lu, L. Wang, P. Chen, Z. Hou, J. Catal. 296 (2012) 1.
[20] T. Miyazawa, Y. Kusunoki, K. Kunimori, K. Tomishige, J. Catal. 240 (2006) 213.
[21] Z.W. Huang, F. Cui, H.X. Kang, J. Chen, X.Z. Zhang, C.G. Xia, Chem. Mater. 20
(2008) 5090.
[22] Z.L. Yuan, J.H. Wang, L.N. Wang, W.H. Xie, P. Chen, Z.Y. Hou, X.M. Zheng,
Bioresour. Technol. 101 (2010) 7088.
Compared to Cu/SiO2, the 3CuB/SiO2 catalyst exhibited superior
long-term performance when using water as solvent, which was
mainly related to the stabilizing effect of B2O3 on Cu nanoparticles
and strong interaction between copper and boron species. Never-
theless, the 3CuB/SiO2 catalyst still suffered from deactivation after
56 h time-on-stream, presumably due to the sintering and aggre-
gation of active metallic species. The lifespan of 3CuB/SiO2 can be
greatly extended to 150 h, when 2-propanol was employed as
the reaction solvent, instead of water. The important role of solvent
on the stability for Cu-based catalysts will be further investigated
in our future work.
[23] A. Bienholz, F. Schwab, P. Claus, Green Chem. 12 (2010) 290.
[24] I. Gandarias, J. Requies, P.L. Arias, U. Armbruster, A. Martin, J. Catal. 290 (2012)
79.
[25] L.Y. Guo, J.X. Zhou, J.B. Mao, X.W. Guo, S.G. Zhang, Appl. Catal. A: Gen. 367
(2009) 93.
[26] Z.W. Huang, F. Cui, H.X. Kang, J. Chen, C.G. Xia, Appl. Catal. A: Gen. 366 (2009)
288.
[27] E.S. Vasiliadou, A.A. Lemonidou, Appl. Catal. A: Gen. 396 (2011) 177.
[28] A. Bienholz, H. Hofmann, P. Claus, Appl. Catal. A: Gen. 391 (2010) 153.
[29] J. Zheng, Z. Xia, J. Li, W. Lai, X. Yi, B. Chen, W. Fang, H. Wan, Catal. Commun. 21
(2012) 18.
[30] Z. He, H. Lin, P. He, Y. Yuan, J. Catal. 277 (2011) 54.
[31] X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, J. Mol. Catal. A: Chem. 345 (2011) 60.
[32] S. Zhao, H. Yue, Y. Zhao, B. Wang, Y. Geng, J. Lv, S. Wang, J. Gong, X. Ma, J. Catal.
297 (2013) 142.
[33] L. Ma, D.H. He, Z.P. Li, Catal. Commun. 9 (2008) 2489.
[34] J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang, X. Ma, J. Am. Chem. Soc.
134 (2012) 13922.
Acknowledgment
[35] S.C. Neumair, R. Kaindl, R.D. Hoffmann, H. Huppertz, Solid State Sci. 14 (2012)
229.
[36] G. Águila, F. Gracia, P. Araya, Appl. Catal. A: Gen. 343 (2008) 16.
[37] A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J. Catal.
269 (2010) 411.
This work was financially supported by the Major State Basic
Research Development Program of China (973 Program) (No.
2012CB215305).
[38] A. Yin, J. Qu, X. Guo, W.L. Dai, K. Fan, Appl. Catal. A: Gen. 400 (2011) 39.
[39] S. Natesakhawat, J.W. Lekse, J.P. Baltrus, P.R. Ohodnicki, B.H. Howard, X. Deng,
C. Matranga, ACS Catal. 2 (2012) 1667.
Appendix A. Supplementary material
[40] I. Jiménez-Morales, F. Vila, R. Mariscal, A. Jiménez-López, Appl. Catal. B:
Environ. 117–118 (2012) 253.
Supplementary data associated with this article can be found, in
[41] K.F. Tan, J. Chang, A. Borgna, M. Saeys, J. Catal. 280 (2011) 50.
[42] P. Tupabut, B. Jongsomjit, P. Praserthdam, Catal. Lett. 118 (2007) 195.
[43] A. Yin, X. Guo, W.L. Dai, K. Fan, J. Phy. Chem. C 113 (2009) 11003.
[44] K.L. Deutsch, B.H. Shanks, J. Catal. 285 (2012) 235.
[45] L. Huang, Y.L. Zhu, H.Y. Zheng, Y.W. Li, Z.Y. Zeng, J. Chem. Technol. Biotechnol.
83 (2008) 1670.
[46] Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Appl. Catal. A: Gen. 433–434
(2012) 128.
[47] S. Panyad, S. Jongpatiwut, T. Sreethawong, T. Rirksomboon, S. Osuwan, Catal.
Today 174 (2011) 59.
Reference
[1] A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411.
[2] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem. 10 (2008)
13.
[3] C.H.C. Zhou, J.N. Beltramini, Y.X. Fan, G.Q.M. Lu, Chem. Soc. Rev. 37 (2008) 527.
[4] D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B: Environ. 106
(2011) 423.
[5] S. Zhu, Y. Zhu, S. Hao, H. Zheng, T. Mo, Y. Li, Green Chem. 14 (2012) 2607.
[6] S. Zhu, Y. Qiu, Y. Zhu, S. Hao, H. Zheng, Y. Li, Catal. Today (2012), http://
[48] A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies, M. Behrens, P. Claus, J. Phy.
Chem. C 115 (2010) 999.
[49] J. Zhou, J. Zhang, X. Guo, J. Mao, S. Zhang, Green Chem. 14 (2012) 156.