Applied Edman chemistry in the gas phase
[
27] S. G. Summerfield, M. S. Bolgar, S. J. Gaskell. Promotion and
Stabilization of b1 ions in Peptide Phenythiocarbamoyl Derivatives:
Analogies with Condensed-phase Chemistry. J. Mass Spectrom.
[47] K. K. Prasad, C. S. Purohit, A. Jain, R. Sankararamakrishnan, S. Verma.
Enforcing solution phase nanoscopic aggregation in a palindromic
tripeptide. Chem. Commun. 2005, 2564.
¨
1
997, 32, 225.
[48] M. Bergmann, L. Zervas. Uber ein allgemeines Verfahren der Peptid-
[
[
[
28] T. Yalcin, W. Gabryeleski, L. Li. Dissociation of protonated
phenylthiohydantoin-amino acids and phenylthiocarbamoyl-
dipeptides. J. Mass Spectrom. 1998, 33, 543.
29] S. G. Summerfield, H. Steen, M. O’Malley, S. J. Gaskell. Phenyl
thiocarbamoyl and related derivatives of peptides: Edman
chemistry in the gas phase. Int. J. Mass Spectrom. 1999, 188, 95.
30] G. E. Reid, S. E. Tichy, J. Prez, R. A. O’Hair, R. J. Simpson, H. I.
Kantt a¨ maa. Polar Effects Control Hydrogen Abstraction Reactions
of Charged, Substituted Phenyl Radicals. J. Am. Chem. Soc. 2001,
Synthese. Ber.Dtsch. Chem. Ges. 1932, 65, 1192.
[49] P. Langer,
A. Bodtke.
Sequential
Cyclizations
of
2-
Isothiocyanatobenzonitrile with α-Aminocarboxylic Esters
and Acids. Synlett 2003, 11, 1743.
[50] S. Reyes, K. Burgess. On Formation of Thiohydantoins from Amino
Acids under Acylation Conditions. J. Org. Chem. 2006, 71, 2507.
[51] A. B. Smith, S. S.-Y. Chen, F. C. Nelson, J. M. Reichert, B. A. Salvatore.
Total Syntheses of (+)-Acutiphycin and (+)-trans-20,21-
Didehydroacutiphycin. J. Am. Chem. Soc. 1997, 119, 10935.
[52] T. S. Rao, S. Nampalli, P. Sekher, S. Kumar. TFA-NHS as bifunctional
protecting agent: simultaneous protection and activation of amino
carboxylic acids. Tetrahedron Lett. 2002, 43, 7793.
[53] M. Adamczyk, Y.-Y. Chen, J. C. Gebler, D. D. Johnson, P. G. Mattingly,
J. A. Moore, R. E. Reddy, J. Wu, Z. Yu. Evaluation of chemilumines-
cent estradiol conjugates by using a surface plasmon resonance
detector. Steroids 2000, 65, 295.
123, 1184.
[
[
[
31] G. Bouchoux, J. Y. Salpin. Gas-phase basicity of glycine, alanine,
proline, serine, lysine, histidine and some of their peptides by the
thermokinetic method. Eur. J. Mass Spectrom. 2003, 9, 391.
32] N. P. Ewing, X. Zhang, C. J. Cassady. Determination of the Gas-Phase
Basicities of Proline and its Di- and Tripeptides with Glycine: The
Enhanced Basicity of Prolylproline. J.MassSpectrom. 1996, 31, 1345.
33] G. Bouchoux, D. A. Buisson, C. Colas, M. Sablier. Protonation
Thermochemistry of α-amino Acids Bearing a Basic Residue. Eur. J.
Mass Spectrom. 2004, 10, 977.
[54] D. M. Schulz, C. Ihling, G. M. Clore, A. Sinz. Mapping the Topology
and Determination of
a Low Resolution Three-Dimensional
Structure of the Calmodulin-Melittin Complex by Chemical Cross-
Linking and High-Resolution FTICR Mass Spectrometry: Direct
Demonstration of Multiple Binding Modes. Biochemistry 2004, 43,
4703.
[
[
34] B. Paizs, S. Suhai. Fragmentation Pathways of Protonated Peptides.
Mass Spectrom. Rev. 2005, 24, 508.
35] W. Yu, J. E. Vath, M. C. Huberty, S. A. Martin. Identification of the
Facile Gas-Phase Cleavage of the Asp-Pro and Asp-Xxx Peptide
Bonds in Matrix-Assisted Laser Desorption Time-of-Flight Mass
Spectrometry. Anal. Chem. 1993, 65, 3015.
36] M. Mak, G. Mezo, Z. Skribanek, F. Hudecz. Stability of Asp-Pro bond
underhighandlowenergycollisioninduceddissociationconditions
in the immunodominant epitope region of Herpes simplex virion
glycoprotein D. Rapid Commun. Mass Spectrom. 1998, 12, 837.
37] Y. Huang, J. M. Triscari, G. C. Tseng, L. Pasa-Tolic, M. S. Lipton,
R. D. Smith, V. H. Wysocki. Statistical Characterization of the Charge
State and Residue Dependence of Low-Energy CID Peptide
Dissociation Patterns. Anal. Chem. 2005, 77, 5800.
[55] S. Peri, H. Steen, A. Pandey. GPMAW – a software tool for analyzing
proteins and peptides. Trends Biochem. Sci. 2001, 26, 687.
[56] R. A. J. O’Hair. The role of nucleophile-electrophile interactions in
the unimolecular and bimolecular gas-phase ion chemistry of
peptides and related systems. J. Mass Spectrom. 2000, 35, 1377.
[57] V. H. Wysocki, G. Tsaprailis, L. L. Smith, L. A. Breci. Mobile and
[
[
[
[
localized protons:
a framework for understanding peptide
dissociation. J. Mass Spectrom. 2000, 35, 1399.
[58] E. J. Soderblom, M. B. Goshe. Collision-Induced Dissociative
Chemical Cross-Linking Reagents and Methodology: Applications
to Protein Structural Characterization Using Tandem Mass
Spectrometry Analysis. Anal. Chem. 2006, 78, 8059.
[59] E. J. Soderblom, B. G. Bobay, J. Cavanagh, M. B. Goshe. Tandem
mass spectrometry acquisition approaches to enhance
identification of protein-protein interactions using low-energy
collision-induceddissociativechemicalcrosslinkingreagents. Rapid
Commun. Mass Spectrom. 2007, 21, 3395.
38] Z. Skribanek, G. Mezo, M. Mak, F. Hudecz. Mass spectrometric and
chemical stability of the Asp-Pro bond in herpes simplex virus
epitope peptides compared with X-Pro bonds of related sequences.
J. Pept. Sci. 2002, 8, 398.
39] W. D. Price,
P. D. Schnier,
R. A. Jockusch,
E. F. Strittmatter,
E. R. Williams. Unimolecular Reaction Kinetics in the High-
Pressure Limit without Collisions. J. Am. Chem. Soc. 1996, 118,
[60] M. Tullberg, M. Grøtli, K. Luthman. Efficient Synthesis of 2,5-
Diketopiperazines using Microwave Assisted Heating. Tetrahedron
2006, 62, 7484.
[61] I. Jeric, S. Horvat. Novel Ester-Linked Carbohydrate-Peptide
Adducts: Effect of the Peptide Substituent on the Pathways of
Intramolecular Reactions. Eur. J. Org. Chem. 2001, 8, 1533.
[62] J. F. Sanz-Cervera, E. M. Stocking, T. Usui, H. Osada, R. M. Williams.
Synthesis and Evaluation of Microtubule Assembly Inhibition and
Cytotoxicity of Prenylated Derivatives of cyclo-L-Trp-L-Pro. Bioorg.
Med. Chem. 2000, 8, 2407.
10640.
[
40] W. D. Price, P. D. Schnier, E. R. Williams. Tandem Mass Spectrometry
of Large Biomolecule Ions by Blackbody Infrared Radiative
Dissociation. Anal. Chem. 1996, 68, 859.
41] G. Tsaprailis, H. Nair, A. Somogyi, V. H. Wysocki, W. Zhong,
J. H. Futrell, S. G. Summerfield, S. J. Gaskell. Influence of Secondary
Structure on the Fragmentation of Protonated Peptides. J. Am.
Chem. Soc. 1999, 121, 5142.
42] A. Schlosser, W. D. Lehmann. Five-membered ring formation in
unimolecular reactions of peptides: a key structural element
controlling low-energy collision-induced dissociation of peptides.
J. Mass Spectrom. 2000, 35, 1382.
43] K. Tilley, M. Akhtarb, D. Gani. The stereochemical course of
decarboxylation, transamination and elimination reactions
catalysed by Escherichia coli glutamic acid decarboxylase. J. Chem.
Soc., Perkin Trans. 1994, 1, 3079.
[
[
base/intermed/scifind/viewer.html.
[64] S. Kalkhof, A. Sinz. Chances and Pitfalls of Chemical Cross-Linking
with Amine-Reactive N-Hydroxy Succinimide Esters. Anal. Bioanal.
Chem. 2008, 392, 305.
[
[65] S. M a¨ dler,C. Bich,D. Touboul,R. Zenobi.Chemicalcross-linkingwith
NHS esters: a systematic study on amino acid reactivities. J. Mass
Spectrom. 2009, 44, 694.
[
[
[
44] D. Hoppe, H. Follmann. 2-Thioxo-oxazolidine durch Cycloaddition
von α-metallierten Alkylisothiocyanaten an Carbonylverbindun-
gen. Chem. Ber. 1976, 109, 3047.
45] G. W. Anderson, J. E. Zimmermann, F. M. Callahan. The Use of Esters
of N-Hydroxysuccinimide in Peptide Synthesis. J. Am. Chem. Soc.
2
[66] B. Schilling, R. H. Row, B. W. Gibson, X. Guo, M. M. Young. MS
Assign, Automated Assignment and Nomenclature of Tandem
Mass Spectra of Chemically Crosslinked Peptides. J. Am. Soc. Mass
Spectrom. 2003, 14, 834.
1
964, 86, 1839.
46] M. Bodanszky, A. Bodanszky. The Practice of Peptide Synthesis,
Second Edition, Springer: Berlin, 1994, 114.
J. Mass. Spectrom. 2010, 45, 178–189
Copyright ꢀc 2009 John Wiley & Sons, Ltd.
www.interscience.wiley.com/journal/jms