Paper
Journal of Materials Chemistry A
membranes. The SR value of the composite membrane was 38% 14 W. Zhengbang, H. Tang and P. Mu, J. Membr. Sci., 2011, 369,
of that of the recast Naon (in area, 2 M aqueous methanol 250–257.
solution), signicantly reducing the manufacturing difficulties 15 F. Meng, N. V. Aieta, S. F. Dec, J. L. Horan, D. Williamson,
of the MEA. The single-cell performance test showed that the
PDmax of PAEK@Naon-15% was 139 mW cm (at 80 C, 2 M
methanol aqueous solution), which was much higher than that
M. H. Frey, P. Pham, J. A. Turner, M. A. Yandrasits,
S. J. Hamrock and A. M. Herring, Electrochim. Acta, 2007,
53, 1372–1378.
ꢁ
2
ꢂ
of the recast Naon with a maximum power density of 94 mW 16 J. L. Malers, M.-A. Sweikart, J. L. Horan, J. A. Turner and
ꢁ
2
cm . All these results demonstrate that composite membranes
have the potential to be used as PEMs for DMFC applications, 17 J. R. Ferrell III, M.-C. Kuo, J. A. Turner and A. M. Herring,
and this provides opportunities to research and develop alter- Electrochim. Acta, 2008, 53, 4927–4933.
native PEMs by incorporating skeleton molecules into the 18 H. Beydaghi, M. Javanbakht, B. Ahmad, ab P. Salarizadeh,
A. M. Herring, J. Power Sources, 2007, 172, 83–88.
Naon matrix.
H. Ghafarian-Zahmatkesh, S. Kashe and E. Kowsari, RSC
Adv., 2015, 5, 74054–74064.
1
2
2
2
9 D. He, H. Tang, Z. Kou, M. Pan, X. Sun, J. Zhang and S. Mu,
Adv. Mater., 2017, 29, 1601741.
0 G. Rambabu, N. Nagaraju and S. D. Bhat, Chem. Eng. J., 2016,
Conflicts of interest
There are no conicts to declare.
306, 43–52.
1 Y. Zhang, W. Cai, F. Si, J. Ge, L. Liang, C. Liu and W. Xing,
Chem. Commun., 2012, 48, 2870.
2 A. K. Sahu, S. Meenakshi, S. D. Bhat, A. Shahid, P. Sridhar,
S. Pitchumani and A. K. Shukla, J. Electrochem. Soc., 2012,
Acknowledgements
We acknowledge the nancial support from the Natural Science
Foundation of China (No. 21875088).
159, F702–F710.
2
2
3 H. Lin, T. L. Yu, L. Huang, L. Chen, K. Shen and G. Jung, J.
Power Sources, 2005, 150, 11–19.
4 C. Ru, Y. Gu, Y. Duan, C. Zhao and H. Na, J. Membr. Sci.,
2019, 573, 439–447.
References
1
2
3
4
N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee and
M. D. Guiver, Angew. Chem., Int. Ed., 2011, 50, 9158–9161.
D. Guo, A. N. Lai, C. X. Lin, Q. G. Zhang, A. M. Zhu and
25 A. Guimet, L. Chikh, A. Morin and O. Fichet, J. Membr. Sci.,
2016, 514, 358–365.
Q. L. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 25279–25288. 26 P. Prapainainar, Z. Du, P. Kongkachuichay, S. M. Holmes
C. Wang, N. Li, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee
and M. D. Guiver, Macromolecules, 2011, 44, 7296–7306.
N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee,
and C. Prapainainar, Appl. Surf. Sci., 2017, 421, 24–41.
27 T. Y. Inan, H. Do ˘g an, E. E. Unveren and E. Eker, Int. J.
Hydrogen Energy, 2010, 35, 12038–12053.
D. H. Cho, J. H. Kim and Y. M. Lee, J. Power Sources, 2016, 28 C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho,
3
07, 834–843.
K. H. Lee, T. Kim, T. Kim, M. Lee, D. Kim, C. M. Doherty,
A. W. Thornton, A. J. Hill, M. D. Guiver and Y. M. Lee,
Nature, 2016, 532, 480–483.
5
6
L. Lei, X. Zhu, J. Xu, H. Qian, Z. Zou and H. Yang, J. Power
Sources, 2017, 350, 41–48.
X. Wang, S. Wang, C. Liu, J. Li, F. Liu, X. Tian, H. Chen, 29 K. A. Mauritz and R. B. Moore, Chem. Rev., 2004, 104(10),
T. Mao, J. Xu and Z. Wang, Electrochim. Acta, 2018, 283,
91–698.
J. Zheng, Q. He, C. Liu, T. Yuan, S. Zhang and H. Yang, J.
Membr. Sci., 2015, 476, 571–579.
4535–4586.
6
30 K. S. Siegert, F. R. Lange, E. R. Sittner, H. Volker,
C. Schlockermann, T. Siegrist and M. Wuttig, Rep. Prog.
Phys., 2015, 78, 13001.
7
8
9
A. L. Mong, S. Yang and D. Kim, J. Membr. Sci., 2017, 543, 31 K. Kreuer and G. Portale, Adv. Funct. Mater., 2013, 23, 5390–
33–142.
5397.
M. Sadakiyo, H. Okawa, A. Shigematsu, M. Ohba, T. Yamada 32 S. Kundu, M. W. Fowler, L. C. Simon and S. Grot, J. Power
and H. Kitagawa, J. Am. Chem. Soc., 2012, 134, 5472–5475.
Sources, 2006, 157, 650–656.
0 M. Liu, L. Chen, S. Lewis, S. Y. Chong, M. A. Little, T. Hasell, 33 Z. Xu, Z. Qi and A. Kaufman, J. Power Sources, 2003, 115, 49–
I. M. Aldous, C. M. Brown, M. W. Smith, C. A. Morrison, 53.
L. J. Hardwick and A. I. Cooper, Nat. Commun., 2016, 7, 34 B. Wang, L. Hong, Y. Li, L. Zhao, C. Zhao and H. Na, ACS
1
1
1
2750.
Appl. Mater. Interfaces, 2017, 9, 32227–32236.
35 C. Ru, Y. Gu, Y. Duan, C. Zhao and H. Na, J. Membr. Sci.,
2019, 573, 439–447.
1
1
1 H. Xu, S. Tao and D. Jiang, Nat. Mater., 2016, 15, 722–726.
2 G. Gnana kumar and A. Manthiram, J. Mater. Chem. A, 2017,
5
, 20497–20504; C. de Bonis, D. Cozzi, B. Mecheri, 36 J. P. Diard, B. Le Gorrec, C. Montella, C. Poinsignon and
A. D'Epifanio, A. Rainer, D. De Porcellinis and S. Licoccia,
Electrochim. Acta, 2014, 147, 418–425.
3 C. de Bonis, D. Cozzi, B. Mecheri, A. D'Epifanio, A. Rainer,
G. Vitter, J. Power Sources, 1998, 74, 244–245.
37 K. Shao, J. Zhu, C. Zhao, X. Li, Z. Cui, Y. Zhang, H. Li, D. Xu,
G. Zhang, T. Fu, J. Wu and W. Xing, J. Polym. Sci., Part A:
Polym. Chem., 2009, 47, 5772–5783.
1
D. De Porcellinis and S. Licoccia, Electrochim. Acta, 2014,
147, 418–425.
This journal is © The Royal Society of Chemistry 2020
J. Mater. Chem. A, 2020, 8, 196–206 | 205