9
314
J . Org. Chem. 1997, 62, 9314-9317
Syn th esis of Ha lom eth yl a n d Oth er Bip yr id in e Der iva tives by
Rea ction of 4,4′-Bis[(tr im eth ylsilyl)m eth yl]-2,2′-bip yr id in e w ith
Electr op h iles in th e P r esen ce of F lu or id e Ion
Cassandra L. Fraser,* Natia R. Anastasi, and J aydeep J . S. Lamba
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901
Received September 8, 1997X
Bipyridine (bpy) ligands figure prominently in many areas of chemistry. Common precursors to
many derivatives are the halomethyl-substituted analogues. This report describes a new, high
yield route to these valuable compounds via a trimethylsilyl (TMS) intermediate. 4,4′-Dimethyl-
2
,2′-bpy was reacted with lithium diisopropylamide, and the dianion thus formed was trapped with
TMSCl to generate 4,4′-bis[(trimethylsilyl)methyl]-2,2′-bpy (1). The TMS group was removed using
-
2 2 2 3 3
dry F sources (TBAF/SiO in THF or CsF in DMF) in the presence of BrF CCF Br or Cl CCCl to
produce the bromide 2 or chloride 3 analogues of 4,4′-bis(halomethyl)-2,2′-bipyridine, respectively.
The CsF/DMF methodology extends to other electrophiles, including benzaldehyde to give 4,4′-
bis(2-hydroxy-2-phenethyl)-2,2′-bpy, 6, as well as to alkyl halides. Benzyl Br, dodecyl Br, and
R-chloroacetonitrile gave mixtures of di- and monoalkylated products along with the diprotonated
product, 4,4′-dimethyl-2,2′-bpy.
In tr od u ction
Some of the most widely used ligands in chemistry are
derivatives are rarely trivial. Typically they are prepared
either by radical halogenation of the appropriate methyl
7,10
11
derivatives, or from hydroxymethyl precursors. Radi-
cal methods usually give rise to mixtures of halogenated
products that are difficult to separate by column chro-
matography. One solution to this problem has been to
carry out selective reduction of polyhalogenated byprod-
ucts with diisobutylaluminum hydride (DIBALH), but
this has resulted in only slight improvements in overall
bipyridine (bpy) and its various derivatives. From foun-
1
dational studies in coordination chemistry to the present
day, this family of nitrogen heterocycles has played a
central role. Currently bpy derivatives figure promi-
2
nently in supramolecular chemistry, conformationally
constrained peptides, in sensors and receptors,4 in
3
5
,6
7
polymer chemistry, studies of redox electrocatalysis,
12
yields. A more efficient approach involves the conver-
8
9
electron transfer, photochemistry, electroluminescence,
sion of alcohol functionalities to halides; however the
synthesis of the hydroxymethyl compounds from methyl
precursors typically involves multiple steps, each of
and a variety of other fields. Halomethyl bipyridines are
particularly useful since they serve as precursors to
numerous other analogues. Despite their widespread
application, the synthesis and purification of halide
11
which give intermediates in moderate to high yields.
2 n
Generation of bpy(CH Li) anions with strong bases,
followed by trapping with electrophiles, has not proven
successful for halide products.
X
11a,13
Abstract published in Advance ACS Abstracts, December 1, 1997.
(1) Reedijk, J . In Comprehensive Coordination Chemistry; Wilkinson,
In trying to develop more efficient routes to 4,4′-
bis(halomethyl)-2,2′-bpy ligands for use as metalloinitia-
Sir G.; Gillard, R. D., McCleverty, J . A., Eds.; Pergamon Press: Oxford
and NY, 1987; Vol. 2, pp 73-98 and references therein.
6
(2) (a) Philp, D.; Stoddart, J . F. Angew. Chem., Int. Ed. Engl. 1996,
tors for living polymerization reactions, it was discovered
3
5, 1154-96. (b) Achar, S.; Puddephatt, R. J . Angew. Chem., Int. Ed.
that halides and other bpy analogues can be conveniently
obtained via the trimethylsilyl (TMS) derivative, 1. Our
approach employs TMS as a carbanion protecting group
Engl. 1994, 33, 847-9. (c) Hasenknopf, B.; Lehn, J . M.; Kneisel, B.
O.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 1838-
4
0. (d) Woods, C. R.; Benaglia, M.; Cozzi, F.; Siegel, J . S. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1830-3. (e) See: Tzalis, D.; Tor, Y. J . Am.
-
that may be removed by F in situ for reaction with
Chem. Soc. 1997, 119, 852-3 and references therein.
(3) (a) Cheng, R. P.; Fisher, S. L.; Imperiali, B. J . Am. Chem. Soc.
electrophiles. Though this methodology has precedent
1
996, 118, 11349-56. (b) Ghadiri, M. R.; Soares, C.; Choi, C. J . Am.
14
in reactions with carbonyl substrates, the use of halide
Chem. Soc. 1992, 114, 825-31, 4000-2. (c) Sardesai, N.; Lin, S. C.;
Zimmermann, K.; Barton, J . K. Bioconjugate Chem. 1995, 6, 302-12.
and RX electrophiles is less common. Described below
are investigations of the reactivity of 1 with halide,
aldehyde, and alkyl halide electrophiles.
(
d) Harding, M. M.; Lehn, J . M. Aust. J . Chem. 1996, 49, 1023-27.
(
4) (a) Torrado, A.; Imperiali, B. J . Org. Chem. 1996, 61, 8940-8.
(
b) Szemes, F.; Hesek, D.; Chen, Z.; Dent, S. W.; Drew, M. G. B.;
Goulden, A. J .; Graydon, A. R.; Grieve, A.; Mortimer, R. J .; Wear, T.;
Weightman, J . S.; Beer, P. D. Inorg. Chem. 1996, 35, 5868-79.
(10) (a) Wang, Z.; Reibenspies, J .; Motekaitis, R. J .; Martell, A. E.
J . Chem. Soc., Dalton Trans. 1995, 1511-8. (b) Rodriguez, J .-C.; Alpha,
B.; Plancherel, D.; Lehn, J .-M. Helv. Chim. Acta 1984, 67, 2264-9. (c)
Newkome, G. R.; Puckett, W. E.; Kiefer, G. E.; Gupta, V. K.; Xia, Y.;
Coreil, M.; Hackney, M. A. J . Org. Chem. 1982, 47, 4116-20.
(11) (a) Della Ciana, L.; Hamachi, I.; Meyer, T. J . J . Org. Chem.
1989, 54, 1731-5. (b) Della Ciana, L.; Dressick, W. J .; von Zelewsky,
A. J . Heterocyc. Chem. 1990, 27, 163. (c) Newkome, G. R.; Kiefer, G.
E.; Kohli, D. K.; Xia, Y.-J .; Fronczek, F. R.; Baker, G. R. J . Org. Chem.
1989, 54, 5105-10. (d) Imperiali, B.; Prins, T. J .; Fisher, S. L. J . Org.
Chem. 1993, 58, 1613-6.
(
5) Matyjaszewski, K.; Patten, T. E.; Xia, J . J . Am. Chem. Soc. 1997,
1
19, 674-80.
(6) Lamba, J . J . S.; Fraser, C. L. J . Am. Chem. Soc. 1997, 119, 1801-
2
.
(7) See: Gould, S.; Strouse, G. F.; Meyer, T. J .; Sullivan, B. P. Inorg.
Chem. 1991, 30, 2942-9 and references therein.
8) (a) Gray, H. B.; Winkler, J . R. Annu. Rev. Biochem. 1996, 65,
(
5
37-61. (b) Holmlin, R. E.; Stemp, E. D. A.; Barton, J . K. J . Am. Chem.
Soc. 1996, 118, 5236-44. (c) Dandliker, P. J .; Holmlin, R. E.; Barton,
J . K. Science 1997, 275, 1465-8.
(9) (a) J uris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser,
(12) Uenishi, J .-I.; Tanaka, R.; Nishiwaki, K.; Wakabayashi, S.; Oae,
S.; Tsukube, H. J . Org. Chem. Soc. 1993, 58, 4382-8.
P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85-277. (b) Sauvage,
J .-P.; Collin, J .-P.; Chambron, J .-C.; Guillerez, S.; Coudret, C.; Balzani,
V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. (Washington,
D.C.) 1994, 94, 993-1019. (c) Balzani, V.; J uris, A.; Venturi, M.;
Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 659-833.
(13) Attempts to react 4,4′-bis-(LiCH
2
)-2,2′-bpy with halide electro-
Br, were unsuccessful in
philes, including NBS, Br , and BrF CCF
2
2
2
yielding 2. Addition of the lithiated bpy to a THF solution of Cl
produced the less reactive dichloro product 3 in impure form.
3 3
CCCl
S0022-3263(97)01685-X CCC: $14.00 © 1997 American Chemical Society