Organic Letters
ORCID
Letter
9683−9747. (f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Visible Light Photoredox Catalysis with Transition Metal Complexes:
Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322−5363.
(5) (a) Moeller, K. D. Using Physical Organic Chemistry To Shape
the Course of Electrochemical Reactions. Chem. Rev. 2018, 118,
4817−4833. See also references cited therein. (b) Feng, R.; Smith, J.
A.; Moeller, K. D. Anodic Cyclization Reactions and the Mechanistic
Strategies That Enable Optimization. Acc. Chem. Res. 2017, 50, 2346−
2352. See also references cited therein.
(6) (a) Nacsa, E. D.; MacMillan, D. W. C. Spin-Center Shift-
Enabled Direct Enantioselective α-Benzylation of Aldehydes with
Alcohols. J. Am. Chem. Soc. 2018, 140, 3322−3330. (b) Jin, J.;
MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C−
H functionalization. Nature 2015, 525, 87−90.
(7) (a) Cao, Z.-Y.; Ghosh, T.; Melchiorre, P. Enantioselective radical
conjugate additions driven by a photoactive intramolecular iminium-
ion-based EDA complex. Nat. Commun. 2018, 9, 3274. (b) Baha-
monde, A.; Murphy, J. J.; Savarese, M.; Bremond, E.; Cavalli, A.;
Melchiorre, P. Studies on the Enantioselective Iminium Ion Trapping
of Radicals Triggered by an Electron-Relay Mechanism. J. Am. Chem.
Soc. 2017, 139, 4559−4567. (c) Murphy, J. J.; Bastida, D.; Paria, S.;
Fagnoni, M.; Melchiorre, P. Asymmetric catalytic formation of
quaternary carbons by iminium ion trapping of radicals. Nature
2016, 532, 218−222.
(8) For selected examples, see: (a) Okada, Y.; Yamaguchi, Y.; Chiba,
K. Substitution Pattern-Selective Olefin Cross-Couplings. ChemElec-
troChem 2019, 6, 4165−4168. (b) Okada, Y.; Yamaguchi, Y.; Ozaki,
A.; Chiba, K. Aromatic “Redox Tag”-assisted Diels−Alder reactions
by electrocatalysis. Chem. Sci. 2016, 7, 6387−6393. (c) Yamaguchi,
Y.; Okada, Y.; Chiba, K. Understanding the Reactivity of Enol Ether
Radical Cations: Investigation of Anodic Four-Membered Carbon
Ring Formation. J. Org. Chem. 2013, 78, 2626−2638. (d) Okada, Y.;
Nishimoto, A.; Akaba, R.; Chiba, K. Electron-Transfer-Induced
Intermolecular [2 + 2] Cycloaddition Reactions Based on the
Aromatic “Redox Tag” Strategy. J. Org. Chem. 2011, 76, 3470−3476.
(e) Okada, Y.; Akaba, R.; Chiba, K. Electrocatalytic Formal [2 + 2]
Cycloaddition Reactions between Anodically Activated Aliphatic Enol
Ethers and Unactivated Olefins Possessing an Alkoxyphenyl Group.
Org. Lett. 2009, 11, 1033−1035.
(9) (a) Nakayama, K.; Maeta, N.; Horiguchi, G.; Kamiya, H.; Okada,
Y. Radical Cation Diels−Alder Reactions by TiO2 Photocatalysis. Org.
Lett. 2019, 21, 2246−2250. (b) Okada, Y.; Maeta, N.; Nakayama, K.;
Kamiya, H. TiO2 Photocatalysis in Aromatic “Redox Tag”-Guided
Intermolecular Formal [2 + 2] Cycloadditions. J. Org. Chem. 2018, 83,
4948−4962. (c) Nagahara, S.; Wakamatsu, H.; Okada, Y.; Chiba, K.
Photocatalytic Cycloadditions Enabled by Lithium Perchlorate/
Nitromethane Electrolyte Solution. Eur. J. Org. Chem. 2018, 2018,
6720−6723.
(10) (a) Okada, Y.; Chiba, K. Redox-Tag Processes: Intramolecular
Electron Transfer and Its Broad Relationship to Redox Reactions in
General. Chem. Rev. 2018, 118, 4592−4630. (b) Imada, Y.;
Yamaguchi, Y.; Shida, N.; Okada, Y.; Chiba, K. Entropic electrolytes
for anodic cycloadditions of unactivated alkene nucleophiles. Chem.
Commun. 2017, 53, 3960−3963.
(11) (a) Okada, Y.; Chiba, K. Electron transfer-induced four-
membered cyclic intermediate formation: Olefin cross-coupling vs.
olefin cross-metathesis. Electrochim. Acta 2011, 56, 1037−1042.
(b) Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K.
Electrochemical Enol Ether/Olefin Cross-Metathesis in a Lithium
Perchlorate/Nitromethane Electrolyte Solution. Angew. Chem., Int. Ed.
2006, 45, 1461−1463.
(12) Okada, Y. Snapshots” of Intramolecular Electron Transfer in
Redox Tag-Guided [2 + 2] Cycloadditions. J. Org. Chem. 2019, 84,
1882−1886.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by JSPS KAKENHI Grant
Nos. 16H06193, 17K19221 (to Y.O.) and 16H02413 (to
H.K.).
REFERENCES
■
(1) Studer, A.; Curran, D. P. The electron is a catalyst. Nat. Chem.
2014, 6, 765−773. See also references cited therein.
̃
(2) For recent reviews, see: (a) Huang, H.-M.; Garduno-Castro, M.
H.; Morrill, C.; Procter, D. J. Catalytic cascade reactions by radical
relay. Chem. Soc. Rev. 2019, 48, 4626−4638. (b) Matsui, J. K.; Lang, S.
B.; Heitz, D. R.; Molander, G. A. Photoredox-Mediated Routes to
Radicals: The Value of Catalytic Radical Generation in Synthetic
Methods Development. ACS Catal. 2017, 7, 2563−2575. (c) Yan, M.;
Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive Intermediates
with Translational Potential. J. Am. Chem. Soc. 2016, 138, 12692−
12714. (d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi,
R. A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of
Olefins. Chem. Rev. 2016, 116, 8912−9000. (e) Hoffmann, R. W.
Markovnikov free radical addition reactions, a sleeping beauty kissed
to life. Chem. Soc. Rev. 2016, 45, 577−583. (f) Chen, Z.-M.; Zhang,
X.-M.; Tu, Y.-Q. Radical aryl migration reactions and synthetic
applications. Chem. Soc. Rev. 2015, 44, 5220−5245. (g) Zhang, B.;
Studer, A. Recent advances in the synthesis of nitrogen heterocycles
via radical cascade reactions using isonitriles as radical acceptors.
Chem. Soc. Rev. 2015, 44, 3505−3521. (h) Tang, S.; Liu, K.; Liu, C.;
Lei, A. Olefinic C−H functionalization through radical alkenylation.
Chem. Soc. Rev. 2015, 44, 1070−1082. (i) Wille, U. Radical Cascades
Initiated by Intermolecular Radical Addition to Alkynes and Related
Triple Bond Systems. Chem. Rev. 2013, 113, 813−853.
̈
̈
(3) For recent reviews, see: (a) Karkas, M. D. Electrochemical
strategies for C-H functionalization and C-N bond formation. Chem.
̈
Soc. Rev. 2018, 47, 5786−5865. (b) Mohle, S.; Zirbes, M.; Rodrigo,
E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern Electrochemical
Aspects for the Synthesis of Value-Added Organic Products. Angew.
Chem., Int. Ed. 2018, 57, 6018−6041. (c) Wiebe, A.; Gieshoff, T.;
̈
Mohle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying
Organic Synthesis. Angew. Chem., Int. Ed. 2018, 57, 5594−5619.
(d) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J.
Electrochemical Arylation Reaction. Chem. Rev. 2018, 118, 6706−
6765. (e) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine
N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-
Oxyl Species: Electrochemical Properties and Their Use in Electro-
catalytic Reactions. Chem. Rev. 2018, 118, 4834−4885. (f) Yoshida, J.;
Shimizu, A.; Hayashi, R. Electrogenerated Cationic Reactive
Intermediates: The Pool Method and Further Advances. Chem. Rev.
2018, 118, 4702−4730. (g) Jiang, Y.; Xu, K.; Zeng, C. Use of
Electrochemistry in the Synthesis of Heterocyclic Structures. Chem.
Rev. 2018, 118, 4485−4540. (h) Yan, M.; Kawamata, Y.; Baran, P. S.
Synthetic Organic Electrochemical Methods Since 2000: On the
Verge of a Renaissance. Chem. Rev. 2017, 117, 13230−13319.
(4) For recent reviews, see: (a) Silvi, M.; Melchiorre, P. Enhancing
the potential of enantioselective organocatalysis with light. Nature
2018, 554, 41−49. (b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.;
Evans, R. W.; MacMillan, D. W. C. The merger of transition metal
and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052. (c) Romero, N. A.;
Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116,
10075−10166. (d) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual
Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016,
̈
̈
116, 10035−10074. (e) Karkas, M. D.; Porco, J. A., Jr.; Stephenson,
C. R. J. Photochemical Approaches to Complex Chemotypes:
Applications in Natural Product Synthesis. Chem. Rev. 2016, 116,
D
Org. Lett. XXXX, XXX, XXX−XXX