Novel synthesis of pinacols and sulfones
Sm2+
Sm
+ NiCl2
O
O
Sm2+
Ar C R +
Sm3+
O R
+
Ar
R
1
a
O
O O
OHOH
OHR
H+
Ar C R
Ar
Ar
Ar
Ar
+
Ar
Ar
Ar
Ar
+
R
meso
R
R
O
R
meso
R
R
OH
dl
dl
b
2
Scheme 4. Possible reaction mechanism of reductive coupling of aryl aldehydes and aryl ketone promoted by Sm–NiCl2 bimetallic system.
[4] E. Alvarez-Manzaneda, R. Chahboun, I. Barranco, E. Cabrera,
E. Alvarez, A. Lara, R. Alvarez-Manzaneda, M. Hmamouchic, H. Es-
Samtic, Tetrahedron 2007, 63, 11943.
Sm
+ NiCl2
Ni*
Ni*
[ArSO2 ]2Ni2+
RX
-
ArSO2R
ArSO2Cl +
[5] K. Suzuki, H. Takikawa, Y. Hachisu, J. W. Bode, Angew. Chem. Int. Ed.
2007, 46, 3252.
5
[6] V. Rauniyar, H. Zhai, D. G. Hall, Synth. Commun. 2008, 38, 3984.
[7] S. Fukuzawa, I. Oura, K. Shimizu, M. Kato, K. Ogata, Eur. J. Org. Chem.
2009, 716.
Scheme 5. Possible reaction mechanism of coupling of aryl sulfonyl
chlorides and active halides promoted by Sm–NiCl2 bimetallic system.
[8] L. A. Paquette, K. W. Lai, Org. Lett. 2008, 10, 3781.
[9] S. N. Chavre, P. R. Ullapu, S. Min, J. K. Lee, A. N.m Pae, Y. Kim,
Y. S. Cho, Org. Lett. 2009, 11, 3834.
[10] C. Wang, Y. Pan, A. Wu, Tetrahedron 2007, 63, 429.
[11] O. Branytska, L. J. W. Shimon, R. Neumann, Chem. Commun. 2007,
3957.
[12] Y. Nishiyama, T. Sawada, K. Chifuku, A. Sato, Y. Kuwahara,
H. Shosenji, Mol. Cryst. Liq. Cryst. 2007, 470, 359.
[13] S. L. Foster, S. Handa, M. Krafft, D. Rowling, Chem. Commun. 2007,
4791.
[14] N. Kise, Y. Shiozawa, N. Ueda, Tetrahedron 2007, 63, 5415.
[15] Y. Mitoma, I. Hashimoto, C. Simion, M. Tashiro, N. Egashira1, Synth.
Commun. 2008, 38, 3243.
[16] P. Raffa, C. Evangelisti, G. Vitulli, P. Salvadori, TetrahedronLett. 2008,
49, 3221.
[17] S. Lin, T. You, Tetrahedron 2008, 64, 9906.
[18] R. S. Paley, K. E. Berry, J. M. Liu, T. T. Sanan, J. Org. Chem. 2009, 74,
1611.
[19] Y. Yang, Z. Shen, T. P. Loh, Org. Lett. 2009, 11, 2213.
[20] M. Paradas, A. G. Campana, R. E. Estevez, L. A. de Cienfuegos,
T. Jimenez, R. Robles, J. M. Cuerva, J. E. Oltra, J. Org. Chem. 2009, 74,
3616.
and Ni are widely used in industry and are less poisonous. The
use of Sm–NiCl2 offers advantages over the Sm–HgCl2 previously
reported.
The possible reaction mechanism of reductive coupling of aryl
aldehydes and aryl ketone mediated by Sm–NiCl2 are given in
Scheme 4. NiCl2 oxidized Sm to Sm2+. In situ-generated Sm2+
reacted with aryl aldehydes or aryl ketone to form radical carbon
anion a and Sm3+. Then radical carbon anion a dimerized into b
followed by protonation to form pinacol 2 in meso and DL form
(see Scheme 4).
The possible reaction mechanism of coupling of aryl sulfonyl
chlorides and active halides mediated by Sm–NiCl2 is explained in
Scheme 5. Sm reduced NiCl2 to active Ni∗. In situ-generated active
Ni∗ reacted with aryl sulfonyl chlorides to form aryl sulfonyl anion.
Then aryl sulfonyl anion attacked active halides to form sulfones 5
(see Scheme 5).
[21] J. Wen, J. Zhao, X. Wang, J. Dong, T. You, J.Mol.Catal.A:Chem. 2006,
245, 242.
Conclusions
[22] J. Wen, J. Zhao, T. You, J. Mol. Catal. A: Chem. 2006, 245, 278.
[23] J. Wen, Q. Tan, T. You, J. Mol. Catal. A: Chem. 2006, 258, 159.
[24] H. Yang, H. Wang, C. Zhu, J. Org. Chem. 2007, 72, 10029.
[25] J. Sun, Z. Dai, C. Lib, X. Pan, C. Zhu, J. Organomet. Chem. 2009, 694,
3219.
[26] D. J. Procter, J. Chem. Soc., Perkin Trans. 1 2000, 835.
[27] T. Pathak, Tetrahedron 2008, 64, 3605.
[28] M. Ji, H. Choi, Y. C. Jeong, J. Jin, W. Baik, S. Lee, J. S. Kim, M. Park,
In summary, we developed novel methods to synthesize pinacols
from aryl aldehydes and aryl ketone in good yields and synthesize
sulfones from aryl sulfonyl chlorides and active halides in good
yields with an Sm–NiCl2 bimetallic system. The main advantages
of the present procedure are the milder reaction conditions and
simple operation. The further utility of the Sm–NiCl2 bimetallic
system in organic synthesis was under study.
S. Koo, Helv. Chim. Acta 2003, 86, 2620.
[29] S. K. Guha, S. Koo, J. Org. Chem. 2005, 70, 9662.
[30] S. H. Kang, H. Choi, C. M. Kim, H. Jun, S. Y. Kang, J. W. Jeong, J. Youn,
Tetrahedron Lett. 2003, 44, 6817.
[31] D. Enders, S. Frank Mu¨ller, G. Raabe, J. Runsink, Eur. J. Org. Chem.
2000, 879.
Acknowledgments
[32] a) S. H. Hwang, M. J. Kurth, J. Org. Chem. 2002, 67, 6564; b) S. Sheng,
P. Huang, W. Zhou, H. Luo, S. Lin, X. Liu, Synlett. 2004, 2603;
c) S. Sheng, L. Xu, X. Zhang, X. Liu, M. Wei, J. Comb. Chem. 2006,
8, 805; d) Y. Chang, C. Liu, C. Guo, Y. Wang, J. Fang, W. Cheng, J. Org.
Chem. 2008, 73, 7197.
We are grateful to the Natural Science Foundation of Zhejiang
Province (Y4100783).
[33] G. Wang, S. Q. Yao, Org. Lett. 2003, 5, 4437.
[34] E. Block,OxidationandReductionofSulfides.ChemistryofFundational
Functional Groups. Supplement E, Part 1, Wiley: New York, 1980,
Chapter 13.
[35] M. Julia, D. Uguen, Bull. Soc. Chim. Fr. 1976, 513.
[36] T. Kanai, Y. Kanagawa, Y. Ishii, J. Org. Chem. 1990, 55, 3274.
[37] A. K. Maiti, P. Bhattacharyya, Tetrahedron 1994, 50, 10483.
References
[1] T. Sawada, Y. Nishiyama, W. Tabuchi, M. Ishikawa, E. Tsutsumi,
Y. Kuwahara, H. Shosenji, Org. Lett. 2006, 8, 1995.
[2] S. Yamabe, N. Tsuchida, S. Yamazaki, J. Comput. Chem. 2007, 28,
1561.
[3] D. J. Upadhyaya, S. D. Samant, Appl. Catal. A: Gen. 2008, 340, 42.
c
Appl. Organometal. Chem. 2011, 25, 331–334
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc