Communication
ChemComm
4 S. W. Kim, S. Matsuishi, T. Nomura, Y. Kubota, M. Takata,
K. Hayashi, T. Kamiya, M. Hirano and H. Hosono, Nano Lett.,
2007, 7, 1138.
5 M. Miyakawa, S. W. Kim, M. Hirano, Y. Kohama, H. Kawaji, T. Atake,
H. Ikegami, K. Kono and H. Hosono, J. Am. Chem. Soc., 2007,
129, 7270.
were prepared by the following procedures: each sample was
taken from the individual reaction mixtures of THF and THF–MeOH
using micro-glass filters without the acidic work-up procedure. For a
more accurate analysis, they were diluted with deionized water.
+
As shown in Fig. 3(b), the ammonium ion (NH4 ) peak was detected
6 K. Lee, S. W. Kim, Y. Toda, S. Matsuishi and H. Hosono, Nature,
2013, 494, 336.
+
in the THF–MeOH co-solvent, whereas the NH4 peak was not
7 (a) A. J. Birch and H. Smith, Q. Rev., Chem. Soc., 1958, 12, 17;
(b) A. J. Birch, Q. Rev., Chem. Soc., 1950, 4, 69; (c) A. J. Birch,
A. L. Hinde and L. Radom, J. Am. Chem. Soc., 1980, 102, 4074;
(d) A. J. Birch, A. L. Hinde and L. Radom, J. Am. Chem. Soc., 1980,
102, 3370; (e) A. J. Birch, Pure Appl. Chem., 1996, 68, 553.
8 (a) L. Bouveault and G. Blanc, Bull. Soc. Chim. Fr., 1904, 31, 666;
(b) L. Bouveault and G. Blanc, Compt. Rend., 1903, 136, 1676.
9 For representative reviews on C–C bond formation via transition-
metal catalysis, see: (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995,
95, 2457; (b) E.-i. Negishi and L. Anastasia, Chem. Rev., 2003,
103, 1979; (c) G. Zeni and R. C. Larock, Chem. Rev., 2006,
106, 4644; (d) E. M. Beccalli, G. Broggini, M. Martinelli and
S. Sottocornola, Chem. Rev., 2007, 107, 5318; for representative
reviews on C–C bond formation via organocatalysis, see: (e) B. List
and J. W. Yang, Science, 2006, 313, 1584; ( f ) D. W. C. MacMillan,
Nature, 2008, 455, 304; (g) B. List and K. Maruoka, Science
of Synthesis: Asymmetric Organocatalysis, Georg Thieme Verlag,
Stuttgart, 2012.
10 For representative reviews on C–C bond formation via radical
process, see: (a) B. Giese, Angew. Chem., Int. Ed. Engl., 1983,
22, 753; (b) B. Giese, Angew. Chem., Int. Ed. Engl., 1985, 24, 553;
(c) G. E. Keck, E. J. Enholm, J. B. Yates and M. R. Wiley, Tetrahedron,
1985, 41, 4079; (d) D. H. R. Barton, Aldrichimica Acta, 1990, 23, 3;
(e) D. P. Curran, in Comprehensive Organic Synthesis, ed. B. M. Trost
and I. Fleming, Pergamon, New York, 1991, vol. 4, pp. 451–482;
( f ) A. L. J. Beckwith, Chem. Soc. Rev., 1993, 22, 143; (g) P. I. Dalko,
Tetrahedron, 1995, 51, 7579.
detected in the pure THF solvent. These observations strongly
support a plausible mechanism (Fig. 1) for the donation of anionic
electrons of the [Ca2N]+ÁeÀ electride to the aldehydes.
In conclusion, we have demonstrated that the [Ca2N]+ÁeÀ
electride acts as an efficient electron donor for the carbon–
carbon bond forming reaction via a free radical process. The
appropriate solvent selection for the [Ca2N]+ÁeÀ electride allows
for the efficient electron transfer to aldehydes. Moreover, we
also identified the evolution of ammonia and the formation of
Ca(OMe)2 by the decomposition of the [Ca2N]+ÁeÀ electride, thereby
releasing anionic electrons to promote the pinacol coupling
reaction. Our protocols can be utilized for the large-scale
production of 1,2-vic-diol via ketyl radical anion dimerization
of aldehydes, which are governed by electron donation from the
[Ca2N]+ÁeÀ electride in alcoholic solvents.
This work was supported by the NRF grant (No.
2013R1A1A1008025), the Institute for Basic Science (IBS), the NRF
NanoÁMaterial Technology Development Program (2012M3A7B4-
049652), the JSPS FIRST Program and the ACCEL Program.
11 H. Buchammagari, Y. Toda, M. Hirano, H. Hosono, D. Takeuchi and
K. Osakada, Org. Lett., 2007, 9, 4287.
Notes and references
1 (a) J. L. Dye, Inorg. Chem., 1997, 36, 3816; (b) J. L. Dye, Acc. Chem. 12 For representative reviews on the pinacol reaction, see:
Res., 2009, 42, 1564; (c) J. L. Dye, Science, 1990, 247, 663.
2 (a) M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara,
S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara and H. Hosono,
Nat. Chem., 2012, 4, 934; (b) Y. Toda, H. Hirayama, N. Kuganathan,
A. Torrisi, P. V. Sushko and H. Hosono, Nat. Commun., 2013, 4, 2378;
(c) Y. Toda, S. Matsuishi, K. Hayashi, K. Ueda, T. Kamiya, M. Hirano
and H. Hosono, Adv. Mater., 2004, 16, 685.
(a) A. Chatterjee and N. N. Joshi, Tetrahedron, 2006, 62, 12137; for
recent selected reports on the pinacol reaction, see: (b) J. Sun, Z. Dai,
C. Li, X. Pan and C. J. Zhu, Organomet. Chem., 2009, 694, 3219;
(c) N. Takenaka, G. Xia and H. Yamamoto, J. Am. Chem. Soc., 2004,
126, 13198; (d) H. C. Aspinall, N. Greeves and S. L. F. Hin, Tetra-
hedron Lett., 2010, 51, 1558; (e) H. Zhao, D. J. Li, L. Deng, L. Liu and
Q. X. Guo, Chem. Commun., 2003, 506.
3 S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, 13 J. M. Khurana, G. Bansal, G. Kukreja and R. R. Pandey, Monatsh.
M. Hirano, I. Tanaka and H. Hosono, Science, 2003, 301, 626. Chem., 2003, 134, 1375.
4794 | Chem. Commun., 2014, 50, 4791--4794
This journal is ©The Royal Society of Chemistry 2014