Page 5 of 7
ACS Catalysis
under Mild Conditions. Org. Lett. 2011, 13, 5640ꢀ5643. (d) Zhu,
3177ꢀ3195. (f). Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehyꢀ
drogenation of Alkanes and Aliphatic Groups by PincerꢀLigated
Metal Complexes. Chem. Rev. 2017, 117, 12357ꢀ12384. (g) Thoi,
V. S.; Sun, Y.; Long J. R.; Chang, C. J. Complexes of Earthꢀ
Abundant Metals for Catalytic Electrochemical Hydrogen Generꢀ
ation under Aqueous Conditions. Chem. Soc. Rev. 2013, 42,
2388ꢀ2400. (h) Gunanathan, C.; Milstein, D. Applications of Acꢀ
ceptorless Dehydrogenation and Related Transformations in
Chemical Synthesis. Science. 2013, 341, 1229712ꢀ1229725. (i)
Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a Subꢀ
strateꢀActivating Strategy in Homogeneous TransitionꢀMetal Caꢀ
talysis. Chem. Rev. 2010, 110, 681ꢀ703.
H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Reduction of Nitroaroꢀ
matic Compounds on Supported Gold Nanoparticles by Visible
and Ultraviolet Light. Angew. Chem., Int. Ed. 2010, 49, 9657ꢀ
9661. (e) Grirrane, A.; Corma, A.; Garcia, H. Preparation of
Symmetric and Asymmetric Aromatic Azo Compounds from Arꢀ
omatic Amines or Nitro Compounds using Supported Gold Cataꢀ
lysts. Nat. Protoc. 2010, 11, 429ꢀ438. (f) Corma, A.; Concepciýn,
P.; Serna, P. A Different Reaction Pathway for the Reduction of
Aromatic Nitro Compounds on Gold Catalysts. Angew. Chem.,
Int. Ed. 2007, 46, 7266ꢀ7269.
1
2
3
4
5
6
7
8
9
(9). (a) Dabbagh, H. A.; Teimouri, A.; Chermahini, A. N. Green and
Efficient Diazotization and Diazo Coupling Reactions on Clays.
Dyes Pigm. 2007, 73, 239ꢀ244. (b) Barbero, M.; Cadamuro, S.;
Dughera, S.; Giaveno, C. Reactions of Dry Arenediazonium oꢀ
Benzenedisulfonimides with Triorganoindium Compounds. Eur.
J. Org. Chem. 2006, 4884ꢀ4890. (c) Gung, B. W.; Taylor, R. T.
Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial
Experiment Suitable for Undergraduate Laboratories. J. Chem.
Educ. 2004, 81, 1630ꢀ1632. (d) Haghbeen, K.; Tan, E. W. Facile
Synthesis of Catechol Azo Dyes. J. Org. Chem. 1998, 63, 4503ꢀ
4505. (e) Barbero, M.; Degani, I.; Dughera, S.; Fochi, R.; Perꢀ
racino, P. Preparation of Diazenes by Electrophilic CꢀCoupling
Reactions of Dry Arenediazonium oꢀBenzenedisulfonimides with
Grignard Reagents. Synthesis 1998, 1235ꢀ1237.
(14). Buckle, D. R. Encyclopedia of Reagents for Organic Synthesis;
John Wiley & Sons, Inc.: New York, 2010.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15). (a) Jessop, P. Hydrogen Storage: Reactions with a Reverse Gear.
Nat. Chem., 2009, 1, 350ꢀ351. (b). Cui, Y.; Kwok, S.; Bucholtz,
A.; Davis, B.; Whitney, R. A.; Jessop, P. G. The Effect of Substiꢀ
tution on the Utility of Piperidines and Octahydroindoles for Reꢀ
versible Hydrogen Storage. New J. Chem., 2008, 32, 1027ꢀ1037.
(c) Crabtree, R. H. Hydrogen Storage in Liquid Organic Heteroꢀ
cycles. Energy Environ. Sci., 2008, 1, 134ꢀ138. (d) Clot, E.; Eiꢀ
senstein, O.; Crabtree, R. H. Computational StructureꢀActivity
Relationships in H2 Storage: How Placement Of N Atoms Affects
Release Temperatures in Organic Liquid Storage Materials.
Chem. Commun., 2007, 2231ꢀ2233
(10). M. B. Smith and J. March. March’s Advanced Organic Chemistry
Reactions, Mechanisms, and Structure. John Wiley & Sons, Inc.
2007.
(16). For detailed experimental procedure, see ESI.
(17). Recent representative reviews on LOHCs: (a) Preuster, P.; Papp,
C, Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs):
Toward a Hydrogenꢀfree Hydrogen Economy. Acc. Chem. Res.
2017, 50, 74ꢀ85. (b) Zhu, Q.ꢀL.; Xu, Q. Liquid Organic and Inorꢀ
ganic Chemical Hydrides for HighꢀCapacity Hydrogen Storage.
Energy Environ. Sci. 2015, 8, 478ꢀ512. (c) Fukuzumi, S.; Sueꢀ
nobu, T. Hydrogen Storage and Evolution Catalysed by Metal
Hydride Complexes. Dalton Trans. 2013, 42, 18ꢀ28. (d) Yadav,
M.; Xu, Q. LiquidꢀPhase Chemical Hydrogen Storage Materials.
Energy Environ Sci. 2012, 12, 9698ꢀ9725. (e) Teichmann, D.;
Arlt, W.; Wasserscheid, P.; Freymann, R. A Future Energy Supꢀ
ply Based on Liquid Organic Hydrogen Carriers (LOHC). Energy
Environ. Sci. 2011, 4, 2767ꢀ2773. (f) Makowski, P.; Thomas, A.;
Kuhn, P.; Goettmann, P. Organic Materials for Hydrogen Storage
Applications: From Physisorption on Organic Solids to Chemiꢀ
sorption in Organic Molecules. Energy Environ. Sci. 2009, 2,
480ꢀ490. (g) Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and
Physical Solutions for Hydrogen Storage. Angew. Chem., Int. Ed.
2009, 48, 6608ꢀ6630.
(18). Selected examples on reversible hydrogenation dehydrogenation
reactions: (a) Forberg, D.; Schwob, T.; Zaheer, M.; Friedrich, M.;
Miyajima, N.; Kempe, R. SingleꢀCatalyst HighꢀWeight% Hydroꢀ
gen Storage in an NꢀHeterocycle Synthesized from Lignin Hyꢀ
drogenolysis Products and Ammonia. Nat. Commun., 2016, 7,
13201ꢀ13207. (b) Manas, M. G.; Sharninghausen, L. S.; Lin, E.;
Crabtree, R. H. Iridium Catalyzed Reversible Dehydrogenation ꢀ
Hydrogenation of Quinoline Derivatives under Mild Conditions.
J. Organomet. Chem., 2015, 792, 184ꢀ189. (c) Xu, R.;
Chakraborty, S.; Yuan, H.; Jones, W. D. Acceptorless, Reversible
Dehydrogenation and Hydrogenation of N‑Heterocycles with a
Cobalt Pincer Catalyst. ACS Catal., 2015, 5, 6350ꢀ6354. (d) Hu,
P.; Fogler, E.; DiskinꢀPosner, Y.; Iron, M. A.; Milstein, D. A
Novel Liquid Organic Hydrogen Carrier System Based on Cataꢀ
lytic Peptide Formation and Hydrogenation. Nat. Commun, 2015,
6, 6859ꢀ6866. (e) Fujita, K.ꢀi.; Tanaka, Y.; Kobayashi, M.; Yaꢀ
maguchi, R. Homogeneous Perdehydrogenation and Perhydroꢀ
genation of Fused Bicyclic NꢀHeterocycles Catalyzed by Iridium
Complexes Bearing a Functional Bipyridonate Ligand. J. Am.
Chem. Soc., 2014, 136, 4829ꢀ4832. (f) Chakraborty, S.; Brennesꢀ
sel, W. W.; Jones, W. D. A Molecular Iron Catalyst for the Acꢀ
ceptorless Dehydrogenation and Hydrogenation of Nꢀ
Heterocycles. J. Am. Chem. Soc., 2014, 136, 8564ꢀ8567. (g) Yaꢀ
maguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.ꢀi. Homogeneous
Catalytic System for Reversible DehydrogenationꢀHydrogenation
Reactions of Nitrogen Heterocycles with Reversible Interconverꢀ
(11). (a) Wang, L.; Ishida, A.; Hashidoko, Y.; Hashimoto, M. Dehyꢀ
drogenation of the NH−NH Bond Triggered by Potassium tertꢀ
Butoxide in Liquid Ammonia. Angew. Chem., Int. Ed. 2017, 56,
870ꢀ873. (b) Donck, S.; Gravel, E.; Li, A.; Prakash, P.; Shah, N.;
Leroy, J.; Li, H.; Namboothiri, I. N. N.; Doris, E. Mild and Selecꢀ
tive Catalytic Oxidation of Organic Substrates by a Carbon Nanoꢀ
tubeꢀRhodium Nanohybrid. Catal. Sci. Technol. 2015, 5, 4542ꢀ
4546. (c) Bai, L.ꢀS.; Gao, X.ꢀM.; Zhang, X.; Sun, F.ꢀF.; Ma, N.
Reduced Graphene Oxide as a Recyclable Catalyst for Dehydroꢀ
genation of Hydrazo Compounds. Tetrahedron Lett. 2014, 55,
4545ꢀ4548. (d) Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y.
General PalladiumꢀCatalyzed Aerobic Dehydrogenation to Genꢀ
erate Double Bonds. Chem. Sci. 2012, 3, 883ꢀ886. (e) Drug, E.;
Gozin, M. Catalytic Oxidation of Hydrazo Derivatives Promoted
by a TiCl3/HBr System. J. Am. Chem. Soc. 2007, 129, 13784ꢀ
13785. (f) Kim, S. S. B.; Hommer, R. B.; Cannon, R. D. The Oxꢀ
idation of Hydrazobenzene Catalyzed by Cobalt Complexes in
Nonaqueous Solvents Bull. Korean Chem. Soc. 2006, 27, 255ꢀ
265.
(12). Azobenzene synthesis by oxidation methods, see: (a) Noureldin,
N. A.; Bellegarde, J. W. A Novel Method. The Synthesis of Keꢀ
tones and Azobenzenes using Supported Permanganate. Synthesis
1999, 939ꢀ942. (b) Zuman, P.; Shah, B. Addition, Reduction, and
Oxidation Reactions of Nitrosobenzene. Chem. Rev. 1994, 94,
1621ꢀ1641.
(13). Recent representative reviews on acceptorless dehydrogenation
(ADH) reactions: (a) Gorgas, N.; Kirchner, K. Isoelectronic Manꢀ
ganese and Iron Hydrogenation/Dehydrogenation Catalysts: Simiꢀ
larities and Divergences. Acc. Chem. Res. 2018, DOI:
10.1021/acs.accounts.8b00149. (b) Sordakis, K.; Tang, C.; Vogt,
L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homoꢀ
geneous Catalysis for Sustainable Hydrogen Storage in Formic
Acid and Alcohols. Chem. Rev., 2018, 118, 372ꢀ433. (c) Filonenꢀ
ko, G. A.; Putten, R. v.; Hensen, E. J. M.; Pidko, E. A. Catalytic
(De)Hydrogenation Promoted by NonꢀPrecious MetalsꢀCo, Fe
and Mn: Recent Advances in an Emerging Field. Chem. Soc.
Rev., 2018, 47, 1459ꢀ1483. (d) Crabtree, R. H. Homogeneous
Transition Metal Catalysis of Acceptorless Dehydrogenative Alꢀ
cohol Oxidation: Applications in Hydrogen Storage and to Heterꢀ
ocycle Synthesis. Chem. Rev. 2017, 117, 9228ꢀ9246. (e) Balaraꢀ
man, E.; Nandakumar, A.; Jaiswal, G.; Sahoo, M. K. Ironꢀ
Catalyzed Dehydrogenation Reactions and their Applications in
Sustainable Energy and Catalysis. Catal. Sci. Technol., 2017, 7,
ACS Paragon Plus Environment