T. Oshiki et al.
Bull. Chem. Soc. Jpn., 77, No. 5 (2004) 1011
Soc., 121, 7941 (1999).
10 D. P. Smith, J. R. Strickler, S. D. Gray, M. A. Bruck, R. S.
Holmes, and D. E. Wigley, Organometallics, 11, 1275 (1992).
11 J. E. Hill, G. Balaich, P. E. Fanwick, and I. P. Rothwell,
Organometallics, 12, 2911 (1993).
12 A. van der Linden, C. J. Schaverien, N. Meijboom, C.
Ganter, and A. G. Open, J. Am. Chem. Soc., 117, 3008 (1995).
13 R. Hara and T. Takahashi, Chem. Lett., 2000, 140.
14 P. Shao, R. A. L. Gendron, D. J. Berg, and G. W. Bushnell,
Organometallics, 19, 509 (2000).
´
´
were recorded using Nicolet PROTEGE 460-T. The melting point
was measured in a sealed tube on a Yanaco MP-S3 apparatus and
was uncorrected.
Preparation of [TaCl3(Me3SiCꢀCH)(dme)] (3). Toluene (12
mL) was added to TaCl5 (594 mg, 1.66 mmol) in a 80 mL Schlenk
tube, and then DME (12 mL) was slowly added to the resulting yel-
low suspension. Zn powder (163 mg, 2.49 mmol) was added to the
mixture in one portion at room temperature. After stirring the mix-
ture at room temperature for 60 min, low-valent tantalum was pre-
pared in almost quantitative yield. Trimethylsilylacetylene (235
ꢂ
mL, 1.66 mmol) was added to the suspension and stirred at 25 C
15 M. S. Sigman, A. W. Fatland, and B. E. Earon, J. Am.
Chem. Soc., 120, 5130 (1998).
16 L. Yong and H. Butensch o¨ n, Chem. Commun., 2002, 2852.
17 H. Kinoshita, H. Shinokubo, and K. Oshima, J. Am. Chem.
Soc., 125, 7784 (2003).
for 2 h. All volatiles were removed in vacuo, and the resulting pale
brown powder was extracted with toluene (15 mL). Hexane (20
mL) was added as a layer to the solution, and placed in a ꢃ20
ꢂ
C freezer. Upon standing overnight, brown crystals were deposit-
ed. Removal of the supernatant by a syringe afforded 174 mg (0.37
ꢂ
18 J. R. Strickler, P. A. Wexler, and D. E. Wigley, Organome-
tallics, 7, 2067 (1988).
19 J. R. Strickler, P. A. Wexler, and D. E. Wigley, Organome-
tallics, 10, 118 (1991).
20 G. Smith, R. R. Schrock, M. R. Churchill, and J. W.
Youngs, Inorg. Chem., 20, 387 (1981).
mmol) of 3 in 22% yield. Mp 105 C (dec). IR (nujol/CsI) 1556
ꢃ1
(
(
ꢂ
CꢁC), 309 (ꢂTa{Cl) cm . 1H NMR (C6D6) ꢁ 0.61 (s, 9H,
CH3)3Si–), 3.10 (s, 4H, –OCH2CH2O–), 3.32 (s, 3H, –OCH3),
1
3
1
3
ꢁ
.68 (s, 3H, –OCH3), 15.15 (s, 1H, HCꢁ). C{ H} NMR (C6D6)
0.3 ((CH3)3Si–), 62.6 (–OCH3), 68.2 (–OCH3), 70.9
(
(
–OCH2CH2O–), 75.4 (–OCH2CH2O–), 239.1 (ꢁCSi), 255.3
21 F. Gu e` rin, D. H. McConville, J. J. Vittal, and C. A. P. Yap,
Organometallics, 17, 1290 (1998).
22 T. Masuda, T. Mouri, and T. Higashimura, Bull. Chem. Soc.
Jpn., 53, 1152 (1980).
23 F. A. Cotton, W. T. Hall, K. J. Cann, and F. J. Karol,
Macromolecules, 14, 233 (1981).
24 T. Masuda, Y.-X. Deng, and T. Higashimura, Bull. Chem.
Soc. Jpn., 56, 2798 (1983).
25 A. C. Williams, P. Sheffels, D. Sheehan, and T.
Livinghouse, Organometallics, 8, 1566 (1989).
26 J. B. Hartung and S. F. Pedersen, Organometallics, 9, 1414
(1990).
HCꢁ).
Catalytic Cyclotrimerization of Terminal Alkynes. A typi-
cal procedure is described for the trimerization of 1-hexyne cata-
lyzed by 1. To a yellow solution of 1 (34.8 mg, 7.57 mmol) in tol-
uene (5 mL) was added 1-hexyne (0.87 mL, 7.57 mmol), which
ꢂ
was stirred at 25 C for 18 h. After the reaction, the reaction mix-
ture expose to the air and a small amount of silica gel was added.
The mixture was passed through a short column on silica gel (hex-
ane as an eluent) to remove any inorganic products, and all vola-
tiles were removed in vacuo to give tributylbenzenes (620 mg,
2
.52 mmol). The isomer ratio of the products was analyzed by
gas chromatography (Quadrex 007 OV-17 (50 m ꢄ 0.32 mm))
27 J. A. K. Du Plessis, J. S. Viljoen, and C. J. Du Toit, J. Mol.
Catal., 64, 269 (1991).
1
and H NMR spectroscopy.
2
8
D. J. Arney, P. A. Wexler, and D. E. Wigley, Organometal-
lics, 9, 1282 (1990).
M. A. Bruck, A. S. Copenhaver, and D. E. Wigley, J. Am.
References
2
9
1
R. S. Dickson and P. J. Fraser, Adv. Organomet. Chem., 12,
23 (1974).
A. Naimam and K. P. C. Vollhardt, Angew. Chem., Int. Ed.
Engl., 16, 708 (1977).
Chem. Soc., 109, 6525 (1987).
30 K. Takai, M. Yamada, and K. Utimoto, Chem. Lett., 1995,
851.
31 T. Oshiki, K. Tanaka, J. Yamada, T. Ishiyama, Y. Kataoka,
K. Mashima, K. Tani, and K. Takai, Organometallics, 22, 464
(2003).
3
2
3
Chem. Soc., 99, 1666 (1977).
D. R. McAlister, J. E. Bercaw, and R. G. Bergman, J. Am.
4 K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 23, 539
1984).
32 M. D. Curtis, J. Real, W. Hirpo, and W. M. Butler, Organo-
metallics, 9, 66 (1990).
(
5
6
N. E. Shore, Chem. Rev., 88, 1081 (1988).
G. Costa, ‘‘Comprehensive Polymer Science,’’ ed by G.
33 J.-C. Hierso and M. Etienne, Eur. J. Inorg. Chem., 2000,
839.
Allen and J. C. Bevington, Pergamon, New York (1989), p. 155.
D. B. Grotjahn, ‘‘Comprehensive Organometallic Chemis-
34 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 102,
3288 (1980).
7
try,’’ ed by E. W. Abel, F. G. A. Stone, and G. Wilkinson, Perga-
mon, New York (1995), p. 741.
35 J. R. Strickler, M. A. Bruck, P. A. Wexler, and D. E.
Wigley, Organometallics, 9, 266 (1990).
36 Y.-W. Chao, P. A. Wexler, and D. E. Wigley, Inorg. Chem.,
28, 3860 (1989).
8
1996).
9
M. Lautens, W. Klute, and W. Tam, Chem. Rev., 96, 49
(
O. V. Ozerov, F. T. Ladipo, and B. O. Partick, J. Am. Chem.