Journal of the American Chemical Society
Page 12 of 13
(6) Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating
Traditional Challenges. Chem. Rev. 2018, 118, 8105-8150; (b) Pardo-
Biopolymer and Sustainable Raw Material. Angew. Chem., Int. Ed. 2005,
44, 3358-3393.
Vargas, A.; Delbianco, M.; Seeberger, P. H. Automated glycan assembly
as an enabling technology. Curr. Opin. Chem. Biol. 2018, 46, 48-55.
(14) Delbianco, M.; Kononov, A.; Poveda, A.; Yu, Y.; Diercks, T.;
Jiménez-Barbero, J.; Seeberger, P. H. Well-Defined Oligo- and
Polysaccharides as Ideal Probes for Structural Studies. J. Am. Chem. Soc.
2018, 140, 5421-5426.
(15) (a) Bucior, I.; Burger, M. M. Carbohydrate–carbohydrate interactions
in cell recognition. Curr. Opin. Struct. Biol. 2004, 14, 631-637; (b) Rojo,
J.; Morales, J. C.; Penadés, S., Carbohydrate-Carbohydrate Interactions in
Biological and Model Systems. In Host-Guest Chemistry: Mimetic
Approaches to Study Carbohydrate Recognition, Penadés, S., Ed. Springer
Berlin Heidelberg: Berlin, Heidelberg, 2002; pp 45-92.
(16) Heinze, T.; Hornig, S., Versatile Concept for the Structure Design of
Polysaccharide-based Nanoparticles. In Polysaccharide Materials:
Performance by Design, American Chemical Society: 2009; Vol. 1017, pp
169-183.
(17) Berger, O.; Adler-Abramovich, L.; Levy-Sakin, M.; Grunwald, A.;
Liebes-Peer, Y.; Bachar, M.; Buzhansky, L.; Mossou, E.; Forsyth, V. T.;
Schwartz, T.; Ebenstein, Y.; Frolow, F.; Shimon, L. J. W.; Patolsky, F.;
Gazit, E. Light-emitting self-assembled peptide nucleic acids exhibit both
stacking interactions and Watson–Crick base pairing. Nat. Nanotechnol.
2015, 10, 353.
(18) Nilsson, M. R. Techniques to study amyloid fibril formation in vitro.
Methods 2004, 34, 151-160.
(19) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J.
Hexafluoroisopropanol as a highly versatile solvent. Nature Reviews
Chemistry 2017, 1, 0088.
(20) Andersen, N. H.; Dyer, R. B.; Fesinmeyer, R. M.; Gai, F.; Liu, Z.;
Neidigh, J. W.; Tong, H. Effect of Hexafluoroisopropanol on the
Thermodynamics of Peptide Secondary Structure Formation. J. Am.
Chem. Soc. 1999, 121, 9879-9880.
1
2
3
4
5
6
7
8
(7) (a) Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals:
Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110,
3479-3500; (b) Parker, R. M.; Guidetti, G.; Williams, C. A.; Zhao, T.;
Narkevicius, A.; Vignolini, S.; Frka-Petesic, B. The Self-Assembly of
Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Adv.
Mater. 2018, 30, 1704477; (c) Klemm, D.; Kramer, F.; Moritz, S.;
Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A
New Family of Nature-Based Materials. Angew. Chem., Int. Ed. 2011, 50,
5438-5466; (d) Wang, P.-X.; Hamad, W. Y.; MacLachlan, M. J. Structure
and transformation of tactoids in cellulose nanocrystal suspensions. Nat.
Commun. 2016, 7, 11515; (e) Wang, P.-X.; Hamad, W. Y.; MacLachlan,
M. J. Polymer and Mesoporous Silica Microspheres with Chiral Nematic
Order from Cellulose Nanocrystals. Angew. Chem., Int. Ed. 2016, 55,
12460-12464.
(8) (a) Hassanzadeh, P.; Kharaziha, M.; Nikkhah, M.; Shin, S. R.; Jin, J.;
He, S.; Sun, W.; Zhong, C.; Dokmeci, M. R.; Khademhosseini, A.;
Rolandi, M. Chitin nanofiber micropatterned flexible substrates for tissue
engineering. J. Mater. Chem. B 2013, 1, 4217-4224; (b) Rolandi, M.;
Rolandi, R. Self-assembled chitin nanofibers and applications. Adv.
Colloid Interface Sci. 2014, 207, 216-222; (c) Zhong, C.; Kapetanovic, A.;
Deng, Y.; Rolandi, M. A Chitin Nanofiber Ink for Airbrushing, Replica
Molding, and Microcontact Printing of Self-assembled Macro-, Micro-,
and Nanostructures. Adv. Mater. 2011, 23, 4776-4781.
(9) (a) Fox, S. C.; Li, B.; Xu, D.; Edgar, K. J. Regioselective Esterification
and Etherification of Cellulose: A Review. Biomacromolecules 2011, 12,
1956-1972; (b) Liebert, T.; Hornig, S.; Hesse, S.; Heinze, T. Nanoparticles
on the Basis of Highly Functionalized Dextrans. J. Am. Chem. Soc. 2005,
127, 10484-10485.
(10) (a) Broaders, K. E.; Grandhe, S.; Fréchet, J. M. J. A Biocompatible
Oxidation-Triggered Carrier Polymer with Potential in Therapeutics. J.
Am. Chem. Soc. 2011, 133, 756-758; (b) Bachelder, E. M.; Beaudette, T.
T.; Broaders, K. E.; Dashe, J.; Fréchet, J. M. J. Acetal-Derivatized
Dextran: An Acid-Responsive Biodegradable Material for Therapeutic
Applications. J. Am. Chem. Soc. 2008, 130, 10494-10495.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21) (a) Pinotsi, D.; Buell, A. K.; Dobson, C. M.; Kaminski Schierle, G.
S.; Kaminski, C. F. A Label-Free, Quantitative Assay of Amyloid Fibril
Growth Based on Intrinsic Fluorescence. ChemBioChem 2013, 14, 846-
850; (b) Pinotsi, D.; Grisanti, L.; Mahou, P.; Gebauer, R.; Kaminski, C.
F.; Hassanali, A.; Kaminski Schierle, G. S. Proton Transfer and Structure-
Specific Fluorescence in Hydrogen Bond-Rich Protein Structures. J. Am.
Chem. Soc. 2016, 138, 3046-3057; (c) Shang, J.; Ma, L.; Li, J.; Ai, W.;
Yu, T.; Gurzadyan, G. G. The Origin of Fluorescence from Graphene
Oxide. Sci. Rep. 2012, 2, 792; (d) Samanta, A. Dynamic Stokes Shift and
Excitation Wavelength Dependent Fluorescence of Dipolar Molecules in
Room Temperature Ionic Liquids. J. Phys. Chem. B 2006, 110, 13704-
13716.
(11) Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.;
Scalia, G.; Bergström, L. Cellulose nanocrystal-based materials: from
liquid crystal self-assembly and glass formation to multifunctional thin
films. Npg Asia Materials 2014, 6, e80.
(12) Almeida, I. F.; Pereira, T.; Silva, N. H. C. S.; Gomes, F. P.; Silvestre,
A. J. D.; Freire, C. S. R.; Sousa Lobo, J. M.; Costa, P. C. Bacterial
cellulose membranes as drug delivery systems: An in vivo skin
compatibility study. Eur. J. Pharm. Biopharm. 2014, 86, 332-336.
(13) (a) Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko, A. V.
Automated Chemical Oligosaccharide Synthesis: Novel Approach to
ACS Paragon Plus Environment