M. Saquib et al. / Carbohydrate Research 341 (2006) 1052–1056
1055
with a few drops of satd aq NaHCO3. After separation
of the organic layer, the aqueous layer was extracted
with EtOAc (5 · 5 mL). The combined organic layer
was dried over Na2SO4 and evaporated in vacuo to ob-
tain the crude product mixture 2b and 3b in a 1:1 ratio
(NMR). This was subjected to acetylation with Ac2O
and pyridine to obtain the chromatographically pure
acetyl derivative of 2b (40.0 mg, 43%).
ing the spectral data and Mr. Anoop Kishore Pandey,
for his technical assistance. M.S. and R.S. are thankful
to DOD, New Delhi, for financial support.
Supplementary data
Supplementary data associated with this article can be
A similar reaction procedure was adopted for the
preparation of compound 2e.
1.2.3. (2E)-4,6-Di-O-acetyl-2,3-dideoxy-aldehydo-D-ery-
thro-hex-2-enose (2f). To a solution of the acetyl-pro-
tected glucal 1f (136.0 mg, 0.5 mmol) in CH3CN
(7 mL) was added HfCl4 (18.0 mg, 0.056 mmol) and
ZnI2 (7.0 mg, 0.022 mmol). The resulting mixture was
heated with stirring in an oil bath whose temperature
was raised rapidly from room temperature to 110 ꢁC.
On completion of the reaction (6–8 min, TLC control),
the reaction was quenched with water. The organic layer
was separated, and the aqueous layer was extracted with
EtOAc (4 · 5 mL). The combined organic layer was
washed with water 3–4 times, dried over Na2SO4 and
evaporated in vacuo to obtain the desired aldehyde
(90%). This was subjected to acetylation with Ac2O
and pyridine to obtain the chromatographically pure
acetyl derivative 2f (101.0 mg, 74%).
References
1. (a) Gonzalez, F.; Leasage, S.; Perlin, A. S. Carbohydr. Res.
1975, 42, 267–274; (b) Mukhopadhyay, A.; Suryawanshi,
S. N.; Bhakuni, D. S. Ind. J. Chem. 1988, 27B, 1009–1011;
(c) Sagar, R.; Pathak, R.; Shaw, A. K. Carbohydr. Res.
2004, 339, 2031–2035, and references cited therein.
2. (a) Tulshian, D. B.; Fraser-Reid, B. J. Am. Chem. Soc.
1981, 103, 474–475; (b) Rao, A. V. R.; Purandare, A. V.;
Reddy, E. R.; Gurjar, M. K. Synth. Commun. 1987, 17,
1095–1102; (c) Tolstikov, A. G.; Khakhalina, N. V.;
Spirikhin, L. V. Synthesis 1988, 221–222; (d) Noshita, T.;
Sugiyama, T.; Yamashita, K. Agric. Biol. Chem. 1991, 55,
1207–1209; (e) Pathak, R.; Shaw, A. K.; Bhaduri, A. P.;
Chandrasekhar, K. V. G.; Srivastava, A.; Srivastava, K.
K.; Chaturvedi, V.; Srivastava, R.; Srivastava, B. S.;
Arora, S.; Sinha, S. Bioorg. Med. Chem. 2002, 10, 1695–
1702; (f) Pathak, R.; Pant, C. S.; Shaw, A. K.; Bhaduri, A.
P.; Gaikwad, A. N.; Sinha, S.; Srivastava, A.; Srivastava,
K. K.; Chaturvedi, V.; Srivastava, R.; Srivastava, B. S.
Bioorg. Med. Chem. 2002, 10, 3187–3196; (g) Pathak, R.;
Shaw, A. K.; Bhaduri, A. P. Tetrahedron 2002, 58, 3535–
3541; (h) Yadav, J. S.; Reddy, B. V. S.; Padmavani, B.
Synthesis 2004, 405–408; (i) Yadav, J. S.; Reddy, B. V. S.;
Parimala, G.; Raju, A. K. Tetrahedron Lett. 2004, 45,
1543–1546; (j) Sagar, R.; Singh, P.; Kumar, R.; Maulik, P.
R.; Shaw, A. K. Carbohydr. Res. 2005, 340, 1287–
1300.
3. (a) Kaluza, Z.; Chmielewski, M.; Pedersen, E. B. Hetero-
cycles 1988, 27, 1313–1316; (b) Wengel, J.; Lau, J.;
Pedersen, E. B. Synthesis 1989, 829–832; (c) Lau, J.;
Wengel, J.; Pedersen, E. B.; Vestergaard, B. F. Synthesis
1991, 1183–1190; (d) Wengel, J.; Pedersen, E. B.; Vest-
ergaard, B. F. Synthesis 1992, 319–322; (e) Singh, S. K.;
Parmar, V. S.; Wengel, J. Tetrahedron Lett. 1996, 37,
7619–7622.
4. Turner, C. I.; Williamson, R. M.; Turner, P.; Sherburn,
M. S. Chem. Commun. (Cambridge) 2003, 1610–1611, and
references cited therein.
5. Pathak, R. Ph.D Thesis, Dr. B. R. Ambedkar University
Agra, India, 2001; p 98.
A similar reaction procedure was adopted for the
preparation of the compounds 2g and 2h.
1.3. Physicochemical and spectral data
1.3.1. (2E)-5-O-Acetyl-4,6-di-O-methyl-2,3-dideoxy-alde-
hydo-D-threo-hex-2-enose (acetyl derivative of 2e). [a]D
+11.5 (c 0.130, CHCl3); Rf 0.45 (2:3 EtOAc–hexane);
IR (Neat, cmꢁ1): m 2988, 2931 (–C–H str), 2833
(–CHO str), 1744 (COCH3), 1693 (C@O), 1456 (C@C),
1374 (C–H def of COCH3), 1111 (C–O str). 1H
NMR (200 MHz, CDCl3): d 9.55 (d, 1H, J1,2 7.8 Hz,
H-1), 6.64 (dd, 1H, J3,2 15.7, J3,4 5.2 Hz, H-3), 6.28
(ddd, 1H, J2,3 15.7, J2,1 7.8, J2,4 1.2 Hz, H-2), 5.09 (m,
1H, H-5), 4.11 (td, 1H, J4,3 5.2, J4,2 1.3 Hz, H-4),
3.64–3.36 (m, 2H, H-6), 3.34 (s, 3H, OCH3), 3.29 (s,
3H, OCH3), 2.03 (s, 3H, COCH3). 13C NMR
(50 MHz, CDCl3): d 193.3 (C-1), 170.7 (COCH3),
152.4 (C-3), 134.0 (C-2), 79.4 (C-4), 72.8 (C-5), 70.6
(C-6), 59.6 and 58.9 (2 · OCH3), 21.3 (COCH3).
FABMS: m/z 216 [M]+Å, 202, 180, 154, 136; HRMS:
calcd for C10H16O5: m/z 216.09977; found: m/z
216.09971.
6. (a) Ferrier, R. J. Top. Curr. Chem. 2001, 215, 153–175; (b)
Ferrier, R. J.; Zubkov, O. A. Org. React. 2003, 62, 569–
736.
7. (a) Dunn, P. J.; Graham, A. B.; Grigg, R.; Higginson, P.
Chem. Commun. 2000, 2035–2036; (b) Saito, S.; Naga-
hara, T.; Yamamoto, H. Synlett 2001, 1690–1692; (c)
Hayashi, Y.; Nakamura, M.; Nakao, S.; Inoue, T.; Shoji,
M. Angew. Chem., Int. Ed. 2002, 41, 4079–4082; (d)
Shiina, I.; Suzuki, M.; Yokoyama, K. Tetrahedron Lett.
2002, 43, 6395–6398; (e) Ishihara, K.; Nakayama, M.;
Ohara, S.; Yamamoto, H. Tetrahedron 2002, 58, 8179–
8188.
Acknowledgements
The authors are thankful to Sophisticated Analytical
Instrument Facility (SAIF) CDRI Lucknow for provid-