Organic Letters
Letter
R. P. Chem. Sci. 2010, 1, 387. (f) Lohse, A. G.; Hsung, R. P. Chem. -
Eur. J. 2011, 17, 3812. (g) Lo, B.; Lam, S.; Wong, W.-T.; Chiu, P.
Angew. Chem., Int. Ed. 2012, 51, 12120. (h) Lam, S. K.; Lam, S.;
Wong, W.-T.; Chiu, P. Chem. Commun. 2014, 50, 1738. (i) Wu, Y.-K.;
Dunbar, C. R.; McDonald, R.; Ferguson, M. J.; West, F. G. J. Am.
Chem. Soc. 2014, 136, 14903. (j) LeFort, F. M.; Mishra, V.; Dexter, G.
D.; Morgan, T. D. R.; Burnell, D. J. J. Org. Chem. 2015, 80, 5877.
(k) Topinka, M.; Zawatzky, K.; Barnes, C. L.; Welch, C. J.; Harmata,
M. Org. Lett. 2017, 19, 4106.
Scheme 5. One-Pot Synthesis of Disubstituted Ketones
(3) For reviews, see: (a) Li, H.; Wu, J. Synthesis 2014, 47, 22. For
selected examples, see: (b) Hardinger, S. A.; Bayne, C.; Kantorowski,
E.; McClellan, R.; Larres, L.; Nuesse, M. J. Org. Chem. 1995, 60, 1104.
(c) Mizuno, H.; Domon, K.; Masuya, K.; Tanino, K.; Kuwajima, I. J.
Org. Chem. 1999, 64, 2648. (d) Krenske, E. H.; He, S.; Huang, J.; Du,
Y.; Houk, K. N.; Hsung, R. P. J. Am. Chem. Soc. 2013, 135, 5242.
(e) Li, H.; Hughes, R. P.; Wu, J. J. Am. Chem. Soc. 2014, 136, 6288.
(4) (a) Scadeng, O.; Ferguson, M. J.; West, F. G. Org. Lett. 2011, 13,
114. (b) Cordier, M.; Archambeau, A. Org. Lett. 2018, 20, 2265.
(c) Hu, L.; Rombola, M.; Rawal, V. H. Org. Lett. 2018, 20, 5384.
(5) (a) Grant, T. N.; Rieder, C. J.; West, F. G. Chem. Commun.
2009, 5676. (b) Wu, Y.-K.; McDonald, R.; West, F. G. Org. Lett.
2011, 13, 3584. (c) Vaidya, T.; Eisenberg, R.; Frontier, A. J.
ChemCatChem 2011, 3, 1531. (d) Basak, A. K.; Tius, M. A. Org. Lett.
2008, 10, 4073. (e) Marx, V. M.; Burnell, D. J. J. Am. Chem. Soc. 2010,
132, 1685.
(6) (a) Tang, Q.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2012, 14,
1922. (b) Vander Wal, M. N.; Dilger, A. K.; MacMillan, D. W. C.
Chem. Sci. 2013, 4, 3075. (c) Liu, C.; Oblak, E. Z.; Vander Wal, M.
N.; Dilger, A. K.; Almstead, D. K.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2016, 138, 2134.
(7) (a) Ayala, C. E.; Dange, N. S.; Fronczek, F. R.; Kartika, R. Angew.
Chem., Int. Ed. 2015, 54, 4641. (b) Dange, N. S.; Stepherson, J. R.;
Ayala, C. E.; Fronczek, F. R.; Kartika, R. Chem. Sci. 2015, 6, 6312.
(c) Ayala, C. E.; Dange, N. S.; Stepherson, J. R.; Henry, J. L.;
Fronczek, F. R.; Kartika, R. Org. Lett. 2016, 18, 1084. (d) Malone, J.
A.; Cleveland, A. H.; Fronczek, F. R.; Kartika, R. Org. Lett. 2016, 18,
4408. (e) Stepherson, J. R.; Fronczek, F. R.; Kartika, R. Chem.
Commun. 2016, 52, 2300.
(8) (a) Shih, J.-L.; Nguyen, T. S.; May, J. A. Angew. Chem., Int. Ed.
2015, 54, 9931. (b) Nguyen, T. N.; Nguyen, T. S.; May, J. A. Org.
Lett. 2016, 18, 3786. (c) Nguyen, T. N.; May, J. A. Tetrahedron Lett.
2017, 58, 1535. (d) Nguyen, T. N.; May, J. A. Org. Lett. 2018, 20,
112. (e) Nguyen, T. N.; May, J. A. Org. Lett. 2018, 20, 3618.
(9) (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.
(b) Molander, G. A. J. Org. Chem. 2015, 80, 7837.
experiments.
(11) (a) Karimi, B.; Maleki, J. J. Org. Chem. 2003, 68, 4951.
(b) Kurono, N.; Yamaguchi, M.; Suzuki, K.; Ohkuma, T. J. Org. Chem.
2005, 70, 6530. (c) Malona, J. A.; Colbourne, J. M.; Frontier, A. J.
Org. Lett. 2006, 8, 5661. (d) Sai, M.; Matsubara, S. Synlett 2014, 25,
2067.
a
PMA/SiO2 = phosphomolybdic acid supported on silica gel.17
complete regioselectivities. The silyl enol ether products can be
easily transformed into the corresponding α,α′-disubstituted
ketones in the same reaction.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Complete experimental procedures and compound
characterization data are provided (PDF)
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(12) The working mechanistic hypothesis is that the addition to the
allyl cation initially generates the isomer seen in the cyclohexene
series.
(13) All of the alkyne products were prone to decomposition.
(14) These trifluoroboronates are highly prone to protodeborona-
tion.
(15) Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett.
2004, 45, 729.
(16) For reviews, see: (a) Kuwajima, I.; Nakamura, E. Acc. Chem.
Res. 1985, 18, 181. (b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev.
1997, 97, 2063.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Welch Foundation (grant E-1744) and the NSF
(grant CHE-1800499) for generous financial support.
REFERENCES
■
(1) (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
(b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010,
49, 676. (c) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G.
Chem. Soc. Rev. 2015, 44, 7764.
(17) Kishore Kumar, G. D.; Baskaran, S. J. Org. Chem. 2005, 70,
4520.
(2) For reviews, see: (a) Harmata, M. Chem. Commun. 2010, 46,
8886. (b) Harmata, M. Chem. Commun. 2010, 46, 8904. For selected
examples, see: (c) Fort, A. W. J. Am. Chem. Soc. 1962, 84, 4979.
(d) Harmata, M.; Carter, K. W. Tetrahedron Lett. 1997, 38, 7985.
(e) Krenske, E. H.; Houk, K. N.; Lohse, A. G.; Antoline, J. E.; Hsung,
D
Org. Lett. XXXX, XXX, XXX−XXX