1468
T. Maki et al. / Tetrahedron Letters 50 (2009) 1466–1468
Table 3
Catalytic monoalkylation of 1,2-diolsa
Run
Diol
Catalyst
R2–X (equiv)
Productb (yield: %)
9
10
1
2
3
4
1a
1a
1a
1b
1b
1c
1c
1c
5
5
5
6
6
8
8
8
MeI
BnBr
EtI
MeI
BnBr
BnBr
BnBr
EtI
(10)
(1.2)
(5)
(10)
(1.5)
(1.5)
(1.5)
(5)
9a(Me)
9a(Bn)
9a(Et)
9b(Me)
9b(Bn)
9c(Bn)
9c(Bn)
9c(Et)
65b
10a(Me)
10a(Bn)
10a(Et)
10b(Me)
10b(Bn)
10c(Bn)
10c(Bn)
10c(Et)
<1
<1
<1
79b
45b
89b
64b
84b
99b
79f
ndc
ndc
ndc
ndc
ndc
5
6
7d
8e
9
8
BnBr
(1.5)
9d(Bn)
25b
10d(Bn)
ndc
OH
OH
10g
8
BnBr
(3)
9d(Bn)
91b
10d(Bn)
1
1d
To a mixture of diol, K2CO3 (1.5 equiv), and catalyst (0.1 equiv) in DMF was added R2–X. The mixture was stirred for 38 h at rt.
a
b
c
d
e
f
Isolated yield.
Not detected.
MeCN containing 0.2 equiv of Et4NBr was used instead of DMF.
46 h of reaction time was applied.
Determined by GLC.
g
A mixture of toluene and 50% KOH containing 1 equiv of Et4NBr was used instead of DMF–K2CO3.
significantly improved when a mixture of toluene and 50% KOH
containing 1 equiv of Et4NBr was used (run 10).
Moreover, the method was found to be applicable to monoben-
zylation of 1,3-diol 1d (Eq. 4).
References and notes
1. (a) Lee, G. H.; Choi, E. B.; Lee, E.; Pak, C. S. J. Org. Chem. 1994, 59, 1428–1443; (b)
Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. Org. Lett. 2005, 7, 2129–
2132.
2. (a) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983,
1593–1596; (b) Mikami, T.; Asano, H.; Mitsunobu, O. Chem. Lett. 1987,
2033–2036; (c) Takasu, M.; Naruse, Y.; Yamamoto, H. Tetrahedron Lett.
1988, 29, 1947–1950; (d) Barton, D. H. R.; Zhu, J. Tetrahedron 1992, 48,
8337–8346.
BnBr (1.5 equiv)
OH
OH
OBn
OH
OBn
OBn
8 (0.1 equiv)
+
ð4Þ
K2CO3 (1.5 equiv)
in DMF, at rt, 38 h
3. (a) Leznoff, C. C. Acc. Chem. Res. 1978, 11, 327–333; (b) Nishiguchi,
10e(Bn)
not detected
1e
9e(Bn)
88% yield
T.; Kawamine, K.; Ohtsuka, T. J. Chem. Soc., Perkin Trans.
1 1992,
153–156.
4. Kalinowski, H.-O.; Crass, G.; Seebach, D. Chem. Ber. 1981, 114, 477–487.
5. McDougal, P. G.; Rico, J. G.; Oh, Y.-I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388–
3390.
6. Bouzide, A.; Sauve, G. Tetrahedron Lett. 1997, 38, 5945.
7. (a) Nagashima, N.; Ohno, M. Chem. Pharm. Bull. 1991, 39, 1972–1982; (b)
Scheufler, F.; Maier, M. E. Synlett 2001, 1221–1224; (c) Schmidt, B.; Nave, S.
Adv. Synth. Catal. 2007, 349, 215–230.
To demonstrate chemoselectivity 1c and cyclohexanol (11) were
subjected to this method and only 1a was monbenzylated to afford
9c(Bn) in 96% yield (Eq. 5).
8. Oshima, K.; Kitazono, E.; Aoyama, Y. Tetrahedron Lett. 1997, 38, 5001–
5004.
9. Jha, S. C.; Joshi, N. N. J. Org. Chem. 2002, 67, 3897–3899.
OH
OH
OBn
OH
OBn
BnBr (1.5 equiv)
+
+
8 (0.1 equiv)
10. Petursson, S.; Webber, J. M. Carbohydr. Res. 1982, 103, 41–52.
11. De La Zerda, J.; Barak, G.; Sasson, Y. Tetrahedron 1989, 45, 1533–1536.
12. Bessodes, M.; Boukarim, C. Synlett 1996, 1119–1120.
13. (a) Maki, T.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 1998, 39, 5601–
5604; (b) Iwasaki, F.; Maki, T.; Nakashima, W.; Onomura, O.; Matsumura, Y.
Org. Lett. 1999, 1, 969–972; (c) Iwasaki, F.; Maki, T.; Onomura, O.;
Nakashima, W.; Matsumura, Y. J. Org. Chem. 2000, 65, 996–1002; (d)
Demizu, Y.; Kubo, Y.; Miyoshi, H.; Maki, T.; Matsumura, Y.; Moriyama, N.;
Onomura, O. Org. Lett. 2008, 10, 5075–5077.
14. (a) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003,
125, 2052–2053; (b) Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O.
Tetrahedron Lett. 2004, 45, 9131–9134; (c) Matsumoto, K.; Mitsuda, M.;
Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006,
47, 8453–8456; (d) Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y.
Tetrahedron Lett. 2007, 48, 7605–7609.
15. Typical procedure for monoallylation of 1,2-diol: To a solution of 1a,b (1 mmol)
and catalyst (0.1 mmol) in DMF (2 mL) was added K2CO3 (1.5 mmol) and allyl
bromide (2 mmol) at room temperature. After stirring for 38 h, the mixture
was poured into water and extracted three portion of ethyl acetate. The organic
layer was combined and dried over MgSO4. After filtration, the organic portion
was concentrated under reduced pressure. The resulting residue was purified
by silica gel column chromatography.
OH
9c(Bn)
96% yield
K2CO3 (1.5 equiv)
in DMF, at rt, 38 h
1c
11 (1 equiv)
11
0% yield
ð5Þ
In conclusion, we have developed a new catalytic monoalkylation
method for 1,2-diols. This method is convenient and can be widely
applied, since it does not require a strong base such as NaH there-
fore tolerant to ester groups. Moreover, we have found that the
choice of catalysts for monoalkylation of 1,2-diols depended on
their acidity. The asymmetric version of monoalkylation is cur-
rently underway.
Acknowledgement
This work was supported by The Naito Foundation.