COMMUNICATIONS
with the 6-31G* basis set for the reaction coordinate and frequency
computations. This reduced CAS does not include the s and s*
orbitals of the ªshortº C N bond and the lone-pair orbital on the
alternative N atom. CAS(8,7) produces optimized geometries of MIN,
TS, and LP which differ only slightly from that of CAS(12,10) (see
Figure 1, top). The reaction coordinate was determined with the IRC
method available in Gaussian 94. The conical intersection is easily
located by computing the reaction coordinate until degeneracy of S1
and S0 is achieved. This manifests itself in failure of the MCSCF
calculation to converge owing to S1 ± S0 near-degeneracy. The last
reaction coordinate point before degeneracy (LP) is taken as
representative of the conical intersection.
nistically viewed as a thermally activated process, as previ-
ously established for many triplet ketones.[4,21]
In conclusion, the combined experimental and theoretical
data for the solvent-induced quenching of n,p* excited singlet
azoalkanes support a hydrogen abstraction in which a
transition state is followed by a conical intersection as the
reaction coordinate. This photochemical reaction mechanism
should be general for n,p* singlet excited chromophores and
provides an important rationale for their reactivity and
efficiency in hydrogen abstractions.
[19] a) B. O. Roos, Adv. Chem. Phys. 1987, 69, 399 ± 446; b) the MCSCF
program used is implemented in Gaussian 94, Revision B.2: M. J.
Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson,
M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A.
Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski,
J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W.
Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J.
Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-
Gordon, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA,
USA, 1995.
[20] a) K. Andersson, P.-A. Malmqvist, B. O. Ross, J. Chem. Phys. 1992, 96,
1218 ± 1226; b) MOLCAS, Version 3: K. Andersson, M. R. A. Blom-
berg, M. Fülscher, V. Kellö, R. Lindh, P.-A. Malmqvist, J. Noga, J.
Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban, P. O.
Widmark, University of Lund, Sweden, 1994.
Received: June 11, 1997 [Z10537IE]
German version: Angew. Chem. 1998, 110, 103 ± 107
Keywords: ab initio calculations ´ azo compounds ´ hydro-
gen transfer ´ isotope effects ´ photochemistry
[1] L. Salem, C. Leforestier, G. Segal, R. Wetmore, J. Am. Chem. Soc.
1975, 97, 479 ± 487.
[2] N. J. Turro, J. McVey, V. Ramamurthy, P. Lechtken, Angew. Chem.
1979, 91, 597 ± 612; Angew. Chem. Int. Ed. Engl. 1979, 18, 572 ± 586.
[3] W. M. Nau, F. L. Cozens, J. C. Scaiano, J. Am. Chem. Soc. 1996, 118,
2275 ± 2282, and references therein.
[4] M. A. Garcia-Garibay, A. Gamarnik, R. Bise, L. Pang, W. S. Jenks, J.
Am. Chem. Soc. 1995, 117, 10264 ± 10275.
[21] P. J. Wagner, Q. Cao, R. Pabon, J. Am. Chem. Soc. 1992, 114, 346 ± 348.
[22] P. S. Engel, L. R. Soltero, S. A. Baughman, C. J. Nalepa, P. A. Cahill,
R. B. Weisman, J. Am. Chem. Soc. 1982, 104, 1698 ± 1700.
[5] D. Severance, H. Morrison, Chem. Phys. Lett. 1989, 163, 545 ± 548.
[6] A. E. Dorigo, M. A. McCarrick, R. J. Loncharich, K. N. Houk, J. Am.
Chem. Soc. 1990, 112, 7508 ± 7514.
[23] M. F. Mirbach, M. J. Mirbach, K.±C. Liu, N. J. Turro, J. Photochem.
1978, 8, 299 ± 306.
[7] P. S. Engel, D. W. Horsey, J. N. Scholz, T. Karatsu, A. Kitamura, J.
Phys. Chem. 1992, 96, 7524 ± 7535.
[8] P. S. Engel, D. W. Horsey, D. E. Keys, C. J. Nalepa, L. R. Soltero, J.
Am. Chem. Soc. 1983, 105, 7108 ± 7114.
[9] W. M. Nau, W. Adam, J. C. Scaiano, Chem. Phys. Lett. 1996, 253, 92 ±
96.
[10] M. J. Mirbach, M. F. Mirbach, W. R. Cherry, N. J. Turro, P. Engel,
Chem. Phys. Lett. 1978, 53, 266 ± 269.
[11] P. S. Engel, C. J. Nalepa, Pure Appl. Chem. 1980, 52, 2621 ± 2632.
[12] M. Klessinger, Angew. Chem. 1995, 107, 597 ± 599; Angew. Chem. Int.
Ed. Engl. 1995, 34, 549 ± 551, and references therein.
[13] F. Bernardi, M. Olivucci, M. A. Robb, Chem. Soc. Rev. 1996, 321 ± 328.
[14] B. S. Solomon, T. F. Thomas, C. Steel, J. Am. Chem. Soc. 1968, 90,
2249 ± 2258.
Catalytic, Highly Regio- and Chemoselective
Generation of Radicals from Epoxides:
Titanocene Dichloride as an Electron Transfer
Catalyst in Transition Metal Catalyzed Radical
Reactions**
Andreas Gansäuer,* Marianna Pierobon, and
Harald Bluhm
[15] H. Rau, Angew. Chem. 1973, 85, 248 ± 258; Angew. Chem. Int. Ed.
Engl. 1973, 12, 224 ± 239.
[16] R. P. Bell, The Tunnel Effect in Chemistry, Chapman und Hall,
London, 1980.
During the last two decades the development of efficient
chain reactions has led to an explosive growth in free radical
chemistry.[1] Although the understanding of how substrate
control determines the stereo- and chemoselectivity of these
reactions has reached a high level,[2] to the best of our
knowledge little is known about reagent-controlled, catalytic
transformations of radicals not proceeding as chain reac-
tions.[3] The advantage of this type of reaction is broader
application because the influence of the substrate on the
chemo- and stereoselectivity can ideally be overruled and the
course of the reaction determined solely by the reagent in
catalytic amounts. Therefore a reagent-controlled catalytic
reaction would extend the synthetic utility of free radicals
even further.
[17] For the calculation of kq the ambient-temperature value of t0 ((930 Æ
30) ns, gas phase) was employed for all temperatures. Inclusion of the
much smaller temperature dependence of t0, which implicitly includes
any temperature dependence of kf and kd and the possible contribu-
tion due to photodecomposition, does not affect the activation
parameters within the limits of statistical regression error. For
comparison, the gas-phase lifetimes are 950 and 885 ns at 20 and
658C, respectively; that is, they are within the limits of error of or very
close to the ambient value.
[18] All MCSCF geometry optimizations were carried out with a complete
active space (CAS) including 12 electrons in 10 orbitals (CAS(12,10)).
The CAS orbitals comprise the p and p* N N orbitals, the four s and
s* C N orbitals, the two nitrogen lone pair orbitals of the pyrazoline
fragment, and the s and s* orbitals of the reactive C H bond of
CH2Cl2. To improve the description of the H transfer the standard 6-
31G* basis set (double-z d-type polarization function for atoms of
the first and seconds rows of the periodic system) was augmented with
p-type polarization and s-type diffuse functions on the CH2Cl2
hydrogen atoms and with sp-type diffuse functions (included in
Gaussian 94)[19b] on the nitrogen centers. To improve the energetics by
including the effect of dynamic electron correlation, the S1 energies of
MIN, TS, and LP were recomputed using multireference Mùller±
Plesset perturbation theory with the PT2F method included in
MOLCAS.[20] To reduce the computational cost we used a CAS(8,7)
[*] Dr. A. Gansäuer, M. Pierobon, H. Bluhm
Institut für Organische Chemie der Universität
Tammannstrasse 2, D-37077 Göttingen (Germany)
Fax: Int. code (49)551-392944
e-mail:agansae@gwdg.de
[**] This work was supported by the Fonds der Chemischen Industrie and
the Socrates Program. We thank Prof. R. Brückner for constant
support and encouragement.
Angew. Chem. Int. Ed. 1998, 37, No. 1/2
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3701-0101 $ 17.50+.50/0
101