4
Tetrahedron
Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2007, 48, 2943;
chromatographic purification process (hexanes/EtOAc, 1:1) compound
4a was obtained as a white solid, 157 mg (91%). Other compounds
were synthesized similarly, and the selected spectroscopic data of 3a
and 4a are as follows.
(f) Alcaide, B.; Almendros, P.; Gonzalez, A. M.; Luna, A.; Martinez-
Ramirez, S. Adv. Synth. Catal. 2016, 358, 2000; (g) Alcaide, B.;
Almendros, P.; Luna, A.; Prieto, N. Org. Biomol. Chem. 2013, 11,
1216; (h) Alcaide, B.; Almendros, P.; Luna, A.; Gomez-Campillos, G.;
Torres, M. R. J. Org. Chem. 2012, 77, 3549; (i) Alcaide, B.;
Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem. 2006, 71, 2346; (j)
Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. Chem. Eur. J. 2005,
11, 5708; (k) Liu, J.; Peng, H.; Yang, Y.; Jiang, H.; Yin, B. J. Org.
Chem. 2016, 81, 9695; (l) Liu, J.; Xu, X.; Li, J.; Liu, B.; Jiang, H.; Yin,
B. Chem. Commun. 2016, 52, 9550; (m) Huang, L.; Zhang, X.; Li, J.;
Ding, K.; Li, X.; Zheng, W.; Yin, B. Eur. J. Org. Chem. 2014, 338; (n)
Yin, B.-L.; Lai, J.-Q.; Zhang, Z.-R.; Jiang, H.-F. Adv. Synth. Catal.
2011, 353, 1961; (o) Muthusamy, S.; Karikalan, T. Tetrahedron 2012,
68, 1443; (p) Muthusamy, S.; Ramkumar, R.; Mishra, A. K.
Tetrahedron Lett. 2011, 52, 148; (q) Muthusamy, S.; Gunanathan, C.;
Nethaji, M. J. Org. Chem. 2004, 69, 5631. During preparation of this
manuscript, Kumarswamyreddy and Kesavan reported Cu(OTf)2-
mediated synthesis of spirooxindol[2,1-b]furan derivatives, see: (r)
Kumarswamyreddy, N.; Kesavan, V. Eur. J. Org. Chem. 2016, 5301.
Compound 3a: 64%; pale yellow solid, mp 125-127 oC; IR (KBr) 1722,
1611, 1493, 1471, 1354 cm-1; H NMR (CDCl3, 500 MHz) 2.19 (s,
1
3H), 2.57 (s, 3H), 3.31 (s, 3H), 4.68 (s, 1H), 6.89 (d, J = 8.0 Hz, 1H),
7.08 (t, J = 7.5 Hz, 1H), 7.25-7.35 (m, 4H), 7.36-7.43 (m, 3H); 13C
NMR (CDCl3, 125 MHz) 27.1, 30.2, 33.3, 46.4, 70.4, 84.9, 85.1,
108.7, 121.9, 123.1, 124.5, 128.1, 128.3, 128.8, 129.1, 131.8, 143.6,
173.5, 200.5, 203.2; ESIMS m/z 346 [M+H]+. Anal. Calcd for
C22H19NO3: C, 76.50; H, 5.54; N, 4.06. Found: C, 76.78; H, 5.81; N,
3.92.
Compound 4a: 91%; white solid, mp 230-232 oC; IR (KBr) 1720, 1690,
1631, 1610, 1493, 1385, 1370, 1345, 1230 cm-1; H NMR (CDCl3, 500
1
MHz) 2.03 (s, 3H), 2.59 (s, 3H), 3.30 (s, 3H), 5.08 (s, 1H), 6.91 (d, J
= 7.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 7.14 (t,
J = 7.5 Hz, 1H), 7.25 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 7.43
(d, J = 7.5 Hz, 2H); 13C NMR (CDCl3, 125 MHz) 15.5, 27.1, 29.0,
62.8, 104.4, 108.6, 118.7, 123.5, 123.7, 127.0, 128.4, 128.6, 129.3,
131.9, 133.8, 144.1, 154.2, 167.8, 175.4, 191.4; ESIMS m/z 346
[M+H]+. Anal. Calcd for C22H19NO3: C, 76.50; H, 5.54; N, 4.06.
Found: C, 76.58; H, 5.73; N, 4.17.
4. For similar spirooxindoles bearing -butyrolactone, -methylene--
butyrolactone, tetrahydrofuran, and butenolide moieties, see: (a)
Cerisoli, L.; Lombardo, M.; Trombini, C.; Quintavalla, A. Chem. Eur.
J. 2016, 22, 3865; (b) Li, G.; Huang, L.; Xu, J.; Sun, W.; Xie, J.; Hong,
L.; Wang, R. Adv. Synth. Catal. 2016, 358, 2873; (c) Buttachon, S.;
Chandrapatya, A.; Manoch, L.; Silva, A.; Gales, L.; Bruyere, C.; Kiss,
R.; Kijjoa, A. Tetrahedron 2012, 68, 3253; (d) Rana, S.; Blowers, E. C.;
Tebbe, C.; Contreras, J. I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.;
Rajule, R. N.; Arnst, J. L.; Munkarah, A. R.; Rattan, R.; Natarajan, A.
J. Med. Chem. 2016, 59, 5121; (e) Jayakumar, S.; Muthusamy, S.;
Prakash, M.; Kesavan, V. Eur. J. Org. Chem. 2014, 1893; (f)
Takahashi, M.; Murata, Y.; Yagishita, F.; Sakamoto, M.; Sengoku, T.;
Yoda, H. Chem. Eur. J. 2014, 20, 11091; (g) Murata, Y.; Takahashi,
M.; Yagishita, F.; Sakamoto, M.; Sengoku, T.; Yoda, H. Org. Lett.
2013, 15, 6182; (h) Rana, S.; Natarajan, A. Org. Biomol. Chem. 2013,
11, 244; (i) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem.
Soc. 2007, 129, 1020; (j) Zhou, M.; Miao, M.-M.; Du, G.; Li, X.-N.;
Shang, S.-Z.; Zhao, W.; Liu, Z.-H.; Yang, G.-Y.; Che, C.-T.; Hu, Q.-F.;
Gao, X.-M. Org. Lett. 2014, 16, 5016; (k) Tang, Z.; Liu, Z.; An, Y.;
Jiang, R.; Zhang, X.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2016, 81,
9158; (l) Li, J.; Liu, Y.; Li, C.; Jia, X. Chem. Eur. J. 2011, 17, 7409;
(m) Li, J.; Liu, Y.; Li, C.; Jie, H.; Jia, X. Green Chem. 2012, 14, 1314.
5. Roh, H. J.; Lim, J. W.; Ryu, J. Y.; Lee, J.; Kim, J. N. Tetrahedron Lett.
2016, 57, 4280.
11. For metal-free 5-exo-dig cyclizations, see: (a) Taylor, C.; Bolshan, Y.
Tetrahedron Lett. 2015, 56, 4392; (b) Kraus, G. A.; Wie, J.; Thite, A.
Synthesis 2008, 2427; (c) Chenevert, R.; Page, J.; Plante, R.; Beaucage,
D. Synthesis 1982, 75.
12. For acid-catalyzed 5-exo-dig cyclization, see: (a) Imagawa, H.; Kotani,
S.; Nishizawa, M. Synlett 2006, 642; (b) Liu, C.-R.; Li, M.-B.; Yang,
C.-F.; Tian, S.-K. Chem. Eur. J. 2009, 15, 793; (c) Yuan, F.-Q.; Han,
F.-S. Adv. Synth. Catal. 2013, 355, 537; (d) Wang, Y.; Bi, X.; Li, D.;
Liao, P.; Wang, Y.; Yang, J.; Zhang, Q.; Liu, Q. Chem. Commun. 2011,
47, 809.
13. The reaction of 1a with other cyclic 1,3-dicarbonyl compounds such as
1,3-cyclohexanedione or N,N-dimethylbarbituric acid was very
sluggish, and isolation of the corresponding -adducts or
spirooxindoles failed. The reason is not clear at this stage, and further
studies are currently underway.
Supplementary Data
Supplementary data
(experimental
procedures
and
characterization data for compounds 1g-1i, 3a-3l, and 4a-4m)
associated with this article can be found, in the online version, at
xxxxxxxxxxxx.
6. Ma, Q.; Wang, Y.; Zhao, Y.; Liao, P.; Sun, B.; Bi, X. Eur. J. Org.
Chem. 2014, 4999.
7. For introduction of 1,3-dicarbonyl compounds at the -position of
propargylic alcohols, see: (a) Sanz, R.; Miguel, D.; Martinez, A.;
Alvarez-Gutierrez, J. M.; Rodriguez, F. Org. Lett. 2007, 9, 727; (b)
Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron 2007, 63, 11636;
(c) Funabiki, K.; Komeda, T.; Kubota, Y.; Matsui, M. Tetrahedron
2009, 65, 7457; (d) Maiti, S.; Biswas, S.; Jana, U. Synth. Commun.
2011, 41, 243; (e) Chatterjee, P. N.; Roy, S. Tetrahedron 2011, 67,
4569; (f) Yadav, J. S.; Reddy, B. V. S.; Pandurangam, T.; Rao, K. V.
R.; Praneeth, K.; Kumar, G. G. K. S. N.; Madavi, C.; Kunwar, A. C.
Tetrahedron Lett. 2008, 49, 4296; (g) Aridoss, G.; Laali, K. K.
Tetrahedron Lett. 2011, 52, 6859; (h) Reddy, C. R.; Vijaykumar, J.;
Gree, R. Synthesis 2010, 3715; (i) Kuninobu, Y.; Ueda, H.; Takai, K.
Chem. Lett. 2008, 37, 878; (j) Maity, A. K.; Chatterjee, P. N.; Roy, S.
Tetrahedron 2013, 69, 942.
8. For use of montmorillonite catalyst in nucleophilic substitution reaction
of alcohols with 1,3-dicarbonyls, see: (a) Wang, J.; Masui, Y.; Onaka,
M. Synlett 2010, 2493; (b) Motokura, K.; Nakagiri, N.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006; (c) Motokura,
K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew.
Chem. Int. Ed. 2006, 45, 2605.
9. The reaction of 1a and 2a under typical Mitsunobu reaction conditions
(PPh3, diethyl azodicarboxylate) in toluene at room temperature did not
produce 3a at all.
10. Typical procedure for the synthesis of 3a and 4a: A stirred mixture
of 1a (263 mg, 1.0 mmol), acetylacetone (2a, 300 mg, 3.0 mmol),
montmorillonite K-10 (790 mg, 300%, w/w) in ClCH2CH2Cl (3.0 mL)
was heated to reflux for 1 h. The reaction mixture was filtered through a
pad of Celite and washed thoroughly with ClCH2CH2Cl. After removal
of solvent and column chromatographic purification process
(CH2Cl2/EtOAc, 40:1) compound 3a was obtained as a pale yellow
solid, 221 mg (64%). A stirred mixture of 3a (173 mg, 0.5 mmol) and
K2CO3 (69 mg, 0.5 mmol) in CH3CN (2.0 mL) was heated to reflux for
1
h. After the usual aqueous extractive workup and column