Ring Opening in the Dehydrocholesterol-Previtamin D System
J. Phys. Chem., Vol. 100, No. 2, 1996 927
12
)
6 × 10 s-1, unless there is an activation entropy ∆Sa. Since
(7) MacDiarmid, R.; Sablji c´ , A.; Doering, J. P. J. Chem. Phys. 1985,
8
3, 2147.
8) Kohler, B. E. J. Chem. Phys. 1990, 93, 5838.
9) MacDiarmid, R. Int. J. Quantum Chem. 1986, 29, 875.
(10) Hudson, B. S.; Kohler, B. E.; Schulten, K. In Excited States; Lim,
K., Ed.; Academic Press: New York, 1982; Vol. 6, p 1.
11) Buma, W. J.; Kohler, B. E.; Song, K. J. Chem. Phys. 1990, 92,
622.
12) Buma, W. J.; Kohler, B. E.; Song, K. J. Chem. Phys. 1991, 94,
4691.
the observed ring opening is 30 times slower, there must be a
Sa of about -3.4kB. A negative ∆Sa means that the electro-
cyclic reaction with its aromatic transition state can easily be
perturbed by some thermally excited vibrations.
Surprisingly, this value of ∆Sa is about the same as for the
thermal) ring closure of hexatriene to cyclohexadiene and
derivatives,
open-chain compound, one expects for the ring closure much
more change of order than for the ring opening. ∆Sa is slightly
(
(
∆
(
4
(
(
5
2-54
although due to free internal rotation in the
(
13) Klessinger, M.; Michl, J. Excited States and Photochemistry of
Organic Molecules; Verlag Chemie: Weinheim, 1995.
14) Share, P. E.; Kompa, K. L.; Peyerimhoff, S. D.; van Hemert, M.
C. Chem. Phys. 1988, 120, 411.
(15) Celani, P.; Ottani, S.; Olivucci, M.; Bernardi, F.; Robb, M. A. J.
Am. Chem. Soc. 1994, 116, 10141.
16) Bernardi, F.; De, S.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc.
990, 112, 1737.
17) Bernardi, F.; Olivucci, M.; Ragazos, I. N.; Robb, M. A. J. Am.
Chem. Soc. 1992, 114, 8211.
(
1
5
more negative than calculated by Celani and co-workers for
a place on the surface, before the molecule turns to the conical
intersection.
(
An experimental hint that the (entropy) bottleneck for the
reaction is not close to the starting point of the reaction along
the 2A1 potential surface, but close to a much lower minimum,
comes from the very low fluorescence yield at room temperature
1
(
(
(
(
18) Klessinger, M. Angew. Chem. 1995, 107, 597.
19) Manthe, U.; K o¨ ppel, H. J. Chem. Phys. 1990, 93, 1659.
20) Trulson, M. O.; Dollinger, G. D.; Mathies, R. A. J. Chem. Phys.
-
6
20
(
2 × 10 for cyclohexadiene ): If the molecule would remain
in the Franck-Condon region for 5 ps, either in the 1B2 state
1989, 90, 4274.
20
(
radiative lifetime 6 ns ) or in the 2A1 state (radiative lifetime
(21) Havinga, E.; de Kock, R. J.; Rappoldt, M. P. Tetrahedron 1960,
11, 276.
22) Sternberg, J. C.; Stillo, H. S.; Schwendeman R. H. Anal. Chem.
960, 32, 84.
(23) Gliesing, S.; Reichenb a¨ cher, M.; Ilge, H.-D.; Fassler, D. J. Prakt.
Chem. 1987, 329, 311.
(24) Lessing, H. E.; Jena, A. v. Chem. Phys. Lett. 1976, 42, 213.
25) Laubereau, A. In Ultrashort Laser Pulses; Kaiser, W., Ed.;
Springer: Berlin, 1988.
(26) Fleming, G. R.; Morris, J. M.; Robinson, G. W. Chem. Phys. 1976,
7, 91.
27) Myers, A. B.; Hochstrasser; R. M. IEEE J. Quantum Electr. 1986,
QE-22, 1482.
28) Gliesing, S.; Reichenb a¨ cher, M.; Ilge, H.-D.; Fassler, D. Z. Chem.
1989, 29, 21.
29) Jacobs, H. J. C.; Gielen, J. W. J.; Havinga, E. Tetrahedron Lett.
981, 22, 4013.
1
4
about 15-55 times longer, depending on the geometry ), it
(
-
3
-5
should fluoresce with a quantum yield of 10 to 2 × 10 . If
it, however, proceeds rapidly (e.g. in 10 fs) to a much lower
energy state on the potential surface, as suggested by the
1
1
5
calculations, then the low quantum yield of UV fluorescence
is understandable. So probably, the molecule moves in a very
short time on a purely repulsive surface to the pericyclic
minimum, from where it proceeds within 5.2 ps through an
entropic bottleneck (probably again without barrier) down to a
conical intersection and from there to the product P0 or the educt
D.
In any case, the D* observed by us by excited state absorption
corresponds to a state with a lifetime of 5.2 ps. This state would
be ionized by a UV photon if its energy is still close to the 1B2
or 2A1 state; but if it is much lower in energy (e.g. near the
pericyclic minimum, as suggested above), the UV photon would
not be sufficient for ionization. Since the spectral dependence
of σ(D*) is probably different for the two cases, extending the
measurements of σ(D*) can probably distinguish between them
and thus help to locate the reaction bottleneck.
(
1
(
(
(
1
(
30) Bogoslowskii, H. A.; Berik, I. K.; Gundorov, S. I.; Terenetskaya,
I. P. High Energy Chem. 1989, 23, 218.
(31) Terenetskaya, I. P.; Gundorov, S. I.; Kravchenko, V. I.; Berik, I.
K. SoV. J. Quantum Electron. 1988, 18, 1323.
(
32) Orlov, A. I.; Mikhailova, N. P.; V’yunov, K. A. Khim. Prirod.
Soedin. 1989, 225.
(33) Shida, T.; Egawa, Y.; Kubodera, H.; Kato, T. J. Chem. Phys. 1980,
3, 5963.
7
(
(
34) Shida, T.; Kato, T.; Nosaka, Y. J. Phys. Chem. 1977, 81, 1095.
35) Bondybey, V. E.; English, J. H.; Miller, T. A. J. Mol. Spectrosc.
Whereas the ring opening is slow compared to the expectation
for a barrierless unimolecular process, it is worth noting that it
is much faster than any bimolecular reaction, caused by
collisions between two solute molecules. Nevertheless, pho-
todimers have been observed for dehydrocholesterol as well as
for cyclohexadiene, in particular with excitation at long
1
980, 80, 200.
(36) Seilmeier, A.; Kaiser, W. In Ultrashort Laser Pulses; Kaiser, W.,
Ed.; Springer: Berlin, 1988.
(37) Weiner, A. M.; Ippen, E. P. Chem. Phys. Lett. 1985, 116, 656.
(38) Keery, K. M.; Fleming, G. R. Chem. Phys. Lett. 1982, 93, 322.
(39) Hicks, J. M.; Vandersall, M. T.; Sitzmann, E. V.; Eisenthal, K. B.
Chem. Phys. Lett. 1987, 135, 413.
3
45,55
(40) Nikowa, L.; Schwarzer, D.; Troe, J.; Schroeder, J. J. Chem. Phys.
wavelengths and at high concentrations (40 mmol/dm ).
In
1
992, 97, 4827.
41) Lide, D. R., Ed. Handbook of Chemistry and Physics, 74th ed.;
the products, the ring has not been opened. The obvious
explanation is that the photodimers are formed by excitation of
van der Waals dimers, which will be in equilibrium with the
monomers at higher concentrations.
(
CRC Press: Boca Raton, 1993.
(42) Ackermann, J. R.; Kohler, B. E. J. Chem. Phys. 1984, 80, 45.
(
(
(
(
43) Carreira, L. A. J. Chem. Phys. 1975, 62, 3851.
44) Dauben, W. G.; Funhoff, D. J. H. J. Org. Chem. 1988, 53, 5070.
45) Jacobs, H. J. C.; Havinga, E. AdV. Photochem. 1979, 11, 305.
46) Pfoertner, K. HelV. Chim. Acta 1972, 55, 937.
Acknowledgment. We thank F. Bernardi and M. Olivucci
(Bologna) and I. P. Tereneckaja (Kijev) for helpful comments.
(47) Dauben, W. G.; Disanayaka, B.; Funhoff, D. J. H.; Kohler, B. E.;
Schilke, D. E.; Zhou, B. J. Am. Chem. Soc. 1991, 113, 8367.
(
(
48) Squillacote, M.; Semple, T. C. J. Am. Chem. Soc. 1990, 112, 5546.
49) Granville, M. F.; Holtom, G. R.; Kohler, B. E. Proc. Natl. Acad.
References and Notes
(
1) Woodward, R. B.; Hoffmann, R. The ConserVation of Orbital
Symmetry, 3rd ed.; Verlag Chemie: Weinheim, 1981.
2) Gottfried, N.; Kaiser, W.; Braun, M.; Fuss, W.; Kompa, K. L. Chem.
Phys. Lett. 1984, 110, 335.
3) Trulson, M. O.; Dollinger, G. D.; Mathies, R. A. J. Am. Chem.
Soc. 1987, 109, 587.
4) Reid, P. J.; Doig, S. J.; Mathies, R. A. Chem. Phys. Lett. 1989,
56, 163.
5) Reid, P. J.; Doig, S. J.; Wickham, S. D.; Mathies, R. A. J. Am.
Chem. Soc. 1993, 115, 4754.
6) Reid, P. J.; Lawless, M. K.; Wickham, S. D.; Mathies, R. A. J.
Phys. Chem. 1994, 98, 5597.
Sci. U.S.A. 1980, 77, 31.
(50) Waldeck, D. H. Chem. ReV. 1991, 91, 415.
(51) A° berg, U.; A° kesson, E.; Alvarez, J.-L.; Fedchenia, I.; Sundstr o¨ m,
V. Chem. Phys. 1994, 183, 269.
(52) Marwell, E. N.; Caple, G.; Schatz, B.; Pipin, W. Tetrahedron 1973,
29, 3781.
(
(
(
(53) Gaasbeek, C. J.; Hogeveen, H.; Volger, H. C. Recl. TraV. Chim.
Pays-Bas 1972, 91, 821.
1
(
(
(
54) Lewis, K. E.; Steiner, H. J. Chem. Soc. 1964, 3080.
55) Havinga, E. Experientia 1973, 29, 1181.
(
JP952536Q