Table 3 Summary of non-linear regression parameters for oxygen reduction on GC electrodes grafted with AQ derivatives
0
0
4
10 k /cm s
0
ꢁ1
ꢁ1
ꢁ1
Electrode
E /V
E /V
a
DE
1
/V
DE
2
/V
k
1
G
1
/cm s
2 2
k G /cm s
1
2
1
0
GC/AQ
GC/AQ3
GC/AQ4
ꢁ0.56 ꢃ 0.01
ꢁ0.50 ꢃ 0.02
ꢁ0.64 ꢃ 0.03
ꢁ0.9 ꢃ 0.02
ꢁ0.76 ꢃ 0.03
ꢁ0.67 ꢃ 0.01
3.2 ꢃ 1.5
2.5 ꢃ 1
0.23 ꢃ 0.01
0.36 ꢃ 0.03
0.30 ꢃ 0.04
ꢁ0.25 ꢃ 0.02
ꢁ0.10 ꢃ 0.01
ꢁ0.39 ꢃ 0.08
ꢁ0.3 ꢃ 0.1
ꢁ0.22 ꢃ 0.01
ꢁ0.50 ꢃ 0.03
0.019 ꢃ 0.002
0.017 ꢃ 0.005
0.026 ꢃ 0.002
0.3 ꢃ 0.15
0.12 ꢃ 0.06
0.07 ꢃ 0.04
0.6 ꢃ 0.1
which is not the order observed. The likely reason for this is
the nature of the substituents that determines the degree of
proximity of the redox centre to the surface. This seems
to be the overriding effect, determining the value of the electro-
chemical rate constant.
References
1
2
E. Yeager, Electrochim. Acta, 1984, 29, 1527.
Z. W. Zhang, D. A. Tryk and E. B. Yeager, in Proc. Workshop on
the Electrochemistry of Carbon, ed. S. Sarangapani, J.R. Akridge
and B. Schumm, The Electrochemical Society, Pennington, NJ,
1
984, p. 158.
3
4
5
6
7
8
9
0
1
M. S. Hossain, D. Tryk and E. Yeager, Electrochim. Acta, 1989,
34, 1733.
A. Salimi, H. Eshghi, H. Sharghi, S. M. Golabi and M.
Shamsipur, Electroanalysis, 1999, 11, 114.
A. Salimi, M. F. Mousavi, H. Eshghi, H. Sharghi and M.
Shamsipur, Bull. Chem. Soc. Jpn., 1999, 72, 2121.
T. Nagaoka, T. Sakai, K. Ogura and T. Yoshino, Anal. Chem.,
4
Conclusions
A large positive shift of the redox potential of compound AQ2
in DMF solution compared to AQ1 and AQ was observed.
The rate constants for the one-electron reduction of AQ1
and AQ2 to the corresponding semiquinone radical in DMF
were determined using RDE data and non-linear regression
analysis. The electron transfer reaction for AQ2 is 16 times fas-
ter than for AQ1 in DMF. This could be due to the delocalisa-
tion of electrons caused by the sulfone groups, thus stabilising
the radical formed. A positive potential shift for covalently
attached AQ4 compared with grafted AQ is also observed in
alkaline solution, which is in agreement with that expected
from inductive effects of the benzenesulfonyl group on radical
formation as also observed in DMF. Therefore, reaction (I) is
thermodynamically more feasible when electron-withdrawing
functionalities are incorporated in the AQ molecule. However,
1
986, 58, 1953.
T. Nagaoka, T. Sakai, K. Ogura and T. Yoshino, J. Chem. Soc.,
Faraday Trans. 1, 1987, 83, 1823.
G. S. Calabrese, R. M. Buchanan and M. S. Wrighton,
J. Am. Chem. Soc., 1982, 104, 5786.
G. S. Calabrese, R. M. Buchanan and M. S. Wrighton,
J. Am. Chem. Soc., 1983, 105, 5594.
K. Tammeveski, K. Kontturi, R. J. Nichols, R. J. Potter and
D. J. Schiffrin, J. Electroanal. Chem., 2001, 515, 101.
V. A. Bogdanovskaya, M. R. Tarasevich, M. L. Hidekel, G. I.
Kozub and S. B. Orlov, Elektrokhim., 1984, 20, 164.
1
1
12 A. Sarapuu, K. Vaik, D. J. Schiffrin and K. Tammeveski,
J. Electroanal. Chem., 2003, 541, 23.
1
1
1
3
4
5
K. Vaik, A. Sarapuu, K. Tammeveski, F. Mirkhalaf and D. J.
Schiffrin, J. Electroanal. Chem., 2004, 564, 159.
S. M. Golabi and J. B. Raoof, J. Electroanal. Chem., 1996,
the chemical rate parameter (k
2 2
G ) of oxygen reduction for the
surface bound molecules is lower for compounds AQ3 and
AQ4 in comparison with that of AQ. It is proposed that these
functionalities reduce the rate of the reaction (II) due to both
the stabilisation of the semiquinone radical and by steric
hindrance by these groups. Since the rate determining step is
reaction (II), a suitable functionality to improve reaction (I)
does not necessarily enhance the rate of the chemical reaction
between the semiquinone radical anion and molecular oxygen.
This is an indication of kinetic control of reaction (II), which is
not influenced by the thermodynamic feasibility of the electro-
chemical step. The number of electrons transferred per O2
molecule for all cases was close to two indicating that the
reduction of oxygen stops at the peroxide stage.
4
16, 75.
A. Salimi, C. A. Banks and R. G. Compton, Phys. Chem. Chem.
Phys., 2003, 5, 3988.
16 K. Vaik, D. J. Schiffrin and K. Tammeveski, Electrochem.
Commun., 2004, 6, 1.
1
7
P. Allongue, M. Delamar, B. De sˆ bat, O. Fagebaume, R. Hitmi,
J. Pinson and J.-M. Sav e´ ant, J. Am. Chem. Soc., 1997,
119, 201.
G. G. Wildgoose, M. Pandurangappa, N. S. Lawrence, L. Jiang,
1
8
T. G. J. Jones and R. G. Compton, Talanta, 2003, 60, 887.
19 L. Horner and H. Neumann, Chem. Ber., 1965, 98, 1715.
20
21
22
23
24
A. J. Bard and L. Faulkner, Electrochemical Methods, Wiley,
New York, 2nd edn., 2000.
K. R. Kneten and R. L. McCreery, Anal. Chem., 1992,
6
4, 2518.
M. T. McDermott, K. Kneten and R. McCreery, J. Phys. Chem.,
1992, 96, 3124.
A. P. Brown and F. C. Anson, Anal. Chem., 1977,
49, 1589.
G. J. Gordillo and D. J. Schiffrin, Faraday Discuss., 2000,
Acknowledgements
Support from the European Union Framework V Growth
programme, CLETEPEG project Contract No. G5RD-CT-
1
16, 89.
2001-00463, is gratefully acknowledged. This work was partly
2
2
5
6
R. M. Scribner, J. Org. Chem., 1966, 31, 3671.
M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff,
H. Schulenburg and H. Tributsch, J. Electroanal. Chem., 2001,
500, 510.
supported by the Estonian Science Foundation. F. M. is
grateful to Kashan University, Iran for the award of a study
leave at Liverpool University.
T h i s j o u r n a l i s Q T h e O w n e r S o c i e t i e s 2 0 0 4
P h y s . C h e m . C h e m . P h y s . , 2 0 0 4 , 6 , 1 3 2 1 – 1 3 2 7
1327