Angewandte
Chemie
ving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-
336-033; or deposit@ccdc.cam.ac.uk).
In the examined reactions, the configuration of the biaryl
moiety dictates stereoinduction. It is noteworthy that in this
process subtle remote effects are observed with respect to the
stereogenic center in the phenethyl group. Thus, when
compared to 5a, the use of the diastereomeric ligand 5b can
lead to a measurable and consistent increase (up to 5%) in
the ee value of the product (Table 2). Interestingly, in these
additions it is the R,P-configured ligand that affords the
higher selectivities, whereas in the hydroboration and cyclo-
addition reactions the R,M-configured ligands proved supe-
rior.
[12] a) T. Hayashi, Y. Matsumoto, Y. Ito, J. Am. Chem. Soc. 1989, 111,
3426 – 3428; b) J. M. Brown, D. I. Hulmes, T. P. Layzell, J. Chem.
Soc. Chem. Commun. 1993, 1673 – 1674; c) A. Schnyder, L.
Hintermann, A. Togni, Angew. Chem. 1995, 107, 628 – 630;
Angew. Chem. Int. Ed. Engl. 1995, 34, 931 – 933.
[13] Ligand 3b gave slightly lower enantioselectivities (89% ee in the
hydroboration of styrene). The complexes with ligands 5a and
5b gave lower enantioselectivities and yields.
[14] J. M. Longmire, B. Wang, X. Zhang, J. Am. Chem. Soc. 2002, 124,
13400 – 13401.
In conclusion, we have presented a new class of P,N li-
gands and demonstrated their utility in three different
asymmetric reactions with three different metals. The effi-
ciency (four steps from commercially available material) and
modular nature of the synthesis should permit fine tuning of
the ligand to accommodate a broad scope of asymmetric
transformations. Further studies aimed at diversifying the
structure of the ligands and their application in new reactions
are underway in our laboratories.
[15] Ligand 3b gave slightly lower enantioselectivities (93% ee for
R = CN). The complexes with ligands 5a and 5b gave lower
enantioselectivities and yields.
[16] a) D. E. Frantz, R. Fꢀssler, E. M. Carreira, J. Am. Chem. Soc.
2000, 122, 1806 – 1807; b) N. K. Anand, E. M. Carreira, J. Am.
Chem. Soc. 2001, 123, 9687 – 9688; c) D. E. Frantz, R. Fꢀssler,
E. M. Carreira, J. Am. Chem. Soc. 1999, 121, 11245 – 11246;
d) C. Fischer, E. M. Carreira, Org Lett. 2001, 3, 4319 – 4321;
e) T. F. Knꢁpfel, E. M. Carreira, J. Am. Chem. Soc. 2003, 125,
6054 – 6055.
[17] K. C. Brannock, R. D. Burpitt, J. G. Thweatt, J. Org. Chem. 1963,
28, 1462 – 1464.
Received: July 13, 2004
[18] Ligands 3a and 3b gave comparable results (for R = iPr and R’ =
Ph; 3a: 92% ee (R) and 3b: 94% ee (S)).
Keywords: asymmetric catalysis · atropisomerism ·
heterocycles · hydroboration · P,N ligands
.
[1] Comprehensive Asymmetric Catalysis, Vol. 1–3 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999.
[2] a) P. J. Guiry, C. P. Saunders, Adv. Synth. Catal. 2004, 346, 497 –
537; b) G. Helmchen, A. Pfaltz, Acc. Chem. Res. 2000, 33, 336 –
345; c) For an extensive review on P,N Ligands with pyridine
donors, see: G. Chelucci, G. Orru, G. A. Pinna, Tetrahedron
2003, 59, 9471 – 9515.
[3] Quinap: 1-(2-diphenylphosphino-1-naphthyl)isoquinoline.
[4] a) H. Doucet, E. Fernandez, T. P. Layzell, J. M. Brown, Chem.
Eur. J. 1999, 5, 1320 – 1330; b) J. W. Faller, B. J. Grimmond,
Organometallics 2001, 20, 2454 – 2458; c) N. Gommermann, C.
Koradin, K. Polborn, P. Knochel, Angew. Chem. 2003, 115, 5941 –
5944; Angew. Chem. Int. Ed. 2003, 42, 5763 – 5766; d) J. B.
Morgan, S. P. Miller, J. P. Morken, J. Am. Chem. Soc. 2003, 125,
8702 – 8703; e) C. Chen, X. Li, S. L. Schreiber, J. Am. Chem. Soc.
2003, 125, 10174 – 10175.
[5] We suggest the acronym pinap in analogy to quinap, where “pi”
refers to phthalazine.
[6] N. W. Alock, J. M. Brown, D. I. Hulmes, Tetrahedron: Asymme-
try 1993, 4, 743 – 756.
[7] C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown,
A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process Res. Dev.
2003, 7, 379 – 384.
[8] 50 mg (P)- or (M)-quinap costs E 143 at STREM.
[9] M. Pal, V. R. Batchu, K. Parasuraman, K. Yeleswarapu, J. Org.
Chem. 2003, 68, 6806 – 6809.
[10] Depending on the scale, different separation procedures were
applied. Typically on > 2 g scale either 3a or 5a was selectively
crystallized from the mixture (see Supporting Information for
details), and the residue was purified by flash chromatography.
On a smaller scale the diastereomers were separated by flash
chromatography; for example, 1.21 g of a mixture of 3a/3b was
separated by flash chromatography to give 3a (595 mg) and 3b
(501 mg; 91% mass recovery).
[11] CCDC-243850 (3a) and CCDC-243851 (5a) contain the supple-
mentary crystallographic data for this paper. These data can be
Angew. Chem. Int. Ed. 2004, 43, 5971 –5973
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5973