processes that lead to DNA damage.5 In this respect,
indolizine derivatives represent prime synthetic targets and
investigational compounds useful in the development of
drugs to treat human diseases such as cancer6 and HIV
infections.7
silylated vinylacetylene derivatives 7 and 8 from com-
mercially available 2-pyridine and 2-quinoline carboxalde-
hydes by means of modified Wittig bromoolefination/
Sonogashira coupling procedures.11b The treatment of silylated
conjugated acetylenic derivatives with basic alcoholic solu-
tions or fluoride ions has been known to afford the corre-
sponding terminal acetylenes.12 However, to our surprise,
upon the attempted desilylation of (Z)-2-pyridine-silylated
vinylacetylenes 7 and 8 under standard basic methanol
conditions at room temperature, we observed that the desired
terminal vinylacetylenes were relatively unstable under the
reaction conditions and were converted to 3-methoxymeth-
ylindolizine 9a and 1-methoxymethylpyrrolo[1,2-a]quinoline
10b, respectively (Scheme 1, Tables 1 and 2). The assigned
A number of synthetic approaches to these azabicyclic
heterocycles have been reported and reviewed in the
literature.1,8 Most previous practical syntheses of the indoli-
zine ring system have employed the Scholtz or Tschitschiba-
bin cyclocondensation reactions.1,2a,9 In addition to these
existing procedures, a number of dipolar cycloaddition
reactions of pyridinium ylides with various olefinic and
acetylenic precursors appended with electron-withdrawing
groups have been developed and proven to be quite valuable
in the synthesis of certain indolizine derivatives.1,10 However,
some of the cycloaddition methods are plagued by low-
yielding reactions and regioselectivity problems when un-
symmetrical, highly functionalized, and sterically demanding
alkynes or olefins are used as substrates.1,8-10 Therefore, an
alternate method for the preparation of indolizines that allows
functional group variation on the indolizine nucleus is highly
desirable for structural and biological activity assessments.
In this paper, we wish to report an unprecedented cyclization
reaction of the silicon-capped (Z)-2-pyridine vinylacetylene
with various basic alcohol solutions to give 3-alkoxymethyl-
substituted indolizines. Likewise, 1-alkoxymethylpyrrolo[1,2-
a]quinolines (benz[e]indolizine) derivatives were successfully
obtainedfromthecyclizationof(Z)-2-quinolinevinylacetylene.11a
Our laboratory recently described the preparation of
Scheme 1. Synthesis of 3-Alkoxymethylindolizines and
1-Alkoxymethylbenz[e]indolizines
structures of the products of the reactions are strongly
supported by 1H NMR, 13C NMR, and high-resolution mass
spectrometry studies. Notably, the 1H NMR spectra obtained
for all of the indolizine and benz[e]indolizine products
(except the deuterated compound 10a) listed in Tables 1 and
2 showed a downfield singlet signal between 4.8 and 4.90
ppm consistent with indolizy-type methylene hydrogens
bearing an alkoxyl group.
Investigations aimed at the optimization of the reaction
conditions indicated that the use of KF or CsF along with
heating the reaction mixture to reflux in the desired alcohol
as solvent resulted in rapid and efficient synthesis of
indolizine products. In subsequent reactions, the alcohol was
systematically varied to include primary, secondary, tertiary,
and cyclic alcohols. In addition, functionalized alcohols such
as propargyl, allylic, and benzyl alcohols were used to furnish
a library of 3-alkoxymethylindolizines and 1-alkoxymeth-
ylbenzo[e]indolizine derivatives (Tables 1 and 2). In some
cases (Table 1, entries 1-5, and Table 2, entries 1-6), the
desired products were simply extracted from the reaction
mixture with excellent purity, thereby eliminating the need
for further chromatographic purification. It is of interest to
note that, when the desilylation reactions were performed at
0 °C (basic methanolic solution or TBAF), the desilylated
vinylacetylenes were obtained.11b However, when the reac-
(5) (a) Gundersen, L. L.; Malterud, K. E.; Negussie, A. H.; Rise, F.;
Teklu, S.; Østby, O. B. Bioorg. Med. Chem. 2003, 11, 5409. (b) Nasir, A.
I.; Gundersen, L. L.; Rise, F.; Antonsen, Ø.; Kristensen, T.; Langhelle, B.;
Bast, A.; Custers, I.; Haenen, G.; Wikstro¨m, H. Bioorg. Med. Chem. Lett.
1998, 8, 1829. (c) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.;
Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.;
Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med.
Chem. 1996, 39, 3636.
(6) (a) Humphires, M. J.; Matsumoto, K.; White, S. L.; Olden, K. Cancer
Res. 1986, 46, 5215. (b) Ostrander, G. K.; Scribner, N. K.; Rohrschneider,
L. R. Cancer Res. 1988, 48, 1091. (c) Bols, M.; Lillelund, V. H.; Jensen,
H. H.; Liang, X. Chem. ReV. 2002, 102, 515. (d) Pearson, W. H.; Guo, L.
Tetrahedron Lett. 2001, 42, 8267. (e) Asano, N.; Nash, R. J.; Molyneux,
R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645.
(7) (a) Ruprecht, R. M.; Mullaney, S.; Andersen, J.; Bronson, R. J.
Acquired Immune Defic. Syndr. 1989, 2, 149. (b) Gruters, R. A.; Neefjes,
J. J.; Tersmette, M.; De Goede, R. E. Y.; Tulp, A.; Huisman, H. G.;
Miedema, F.; Ploegh, H. L. Nature 1987, 330, 74. (c) Kaspas, A.; Fleet, G.
W. J.; Dwek, R. A.; Petursson, S.; Namgoong, S. K.; Ramsden, N. G.;
Jacob, G. S.; Radamacher, T. W. Proc. Natl. Acad. Sci. U.S.A. 1989, 86.
(8) (a) Uchida, T.; Matsumoto, K. Synthesis 1976, 209. (b) Behnisch,
R.; Behnisch, P.; Eggenweiler, M.; Wallenhorst, T. Indolizine. In Houben-
Weyl; Thieme: Stuttgart, 1994; Vol. E6b/1, 2a, pp 323-450. (c) Katritzky,
A. R.; Qui, G.; Yang, B.; He, H. Y. J. Org. Chem. 1999, 64, 7618. (d)
Zhang, X. C.; Huang, W. Synthesis 1999, 51.
(9) (a) Scholtz, M. Ber. Dtsch. Chem. Ges. 1912, 45, 734. (b) Boekel-
heide, V.; Windgassen, R. J. J. Chem. Soc. 1959, 81, 1456. (c) Tschitschiba-
bin, A. E. Ber. Dtsch. Chem. Ges. 1927, 60, 1607. (d) Jones, G.; Stanyer,
J. J. Chem. Soc. 1969, 901. (d) Kostik, E. J.; Abiko, A.; Oku, A. J. Org.
Chem. 2001, 66, 2618.
(10) (a) Padwa, A.; Austin, D. J.; Precedo, L.; Zhi, L. J. Org. Chem.
1993, 58, 1144. (b) Wei, X.; Hu, Y.; Li, T.; Hu, H. J. Chem. Soc., Perkin
Trans. 1 1993, 2487. (c) Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y.
J. Org. Chem 2004, 69, 3202. (d) Acheson, R. M.; Robinson, D. A. J.
Chem. Soc. 1968, 1633. (e) Fang, X.; Wu, Y. M.; Deng, J.; Wang, S. W.
Tetrahedron 2004, 60, 5487.
(11) (a) Hayford, A.; Kaloko, J., Jr. U.S. Pat. Appl. 60/640,369, 2004.
(b) Kaloko, J. M.S. Thesis, East Carolina University, Greenville, NC, 2005.
(c) Hayford, A.; Kaloko, J., Jr.; El-Kazaz, S.; Bass, G.; Harrison, C.;
Corprew, T. Org. Lett. 2005, 7, 2671.
(12) (a) Halbes, U.; Pale, P. Tetrahedron Lett. 2002, 43, 2039. (b)
Sakamoto, T.; Shiraiwa, M.; Kondo, Y.; Yamanaka, H. Synthesis 1983,
312. (c) Konakahara, T.; Takagi, Y. Synthesis 1979, 192. (d) Eaborn, C.;
Walton, D. R. M. J. Organomet. Chem. 1965, 4, 217.
4306
Org. Lett., Vol. 7, No. 19, 2005