Organic & Biomolecular Chemistry
Paper
[2+2+2] Cycloaddition of Biaryl-Linked Diynes with Nitriles, 19 H. J. Anderson, N.-C. Wang and E. T. P. Jwili, Reaction of
J. Org. Chem., 2018, 83, 1852–1860.
Phenyllithium with Some N,N-Disubstitiited Cyanamides,
6 L. V. R. Boñaga, H.-C. Zhang, A. F. Moretto, H. Ye,
Can. J. Chem., 1971, 49, 2315–2320.
D. A. Gauthier, J. Li, G. C. Leo and B. E. Maryanoff, 20 C. Mo, Z. Zhang, C. P. Guise, X. Li, J. Luo, Z. Tu, Y. Xu,
Synthesis of Macrocycles via Cobalt-Mediated [2+2+2]
Cycloadditions, J. Am. Chem. Soc., 2005, 127, 3473–3485.
7 L. V. R. Boñaga, H.-C. Zhang and B. E. Maryanoff, Cobalt-
mediated cyclotrimerisation of bis-alkynes and cyana-
mides, Chem. Commun., 2004, 2394–2395.
8 P. Kumar, S. Prescher and J. Louie, A Serendipitous
Discovery: Nickel Catalyst for the Cycloaddition of Diynes
with Unactivated Nitriles, Angew. Chem., Int. Ed., 2011, 50,
10694–10698.
9 R. M. Stolley, M. T. Maczka and J. Louie, Nickel-Catalyzed
[2+2+2] Cycloaddition of Diynes and Cyanamides,
Eur. J. Org. Chem., 2011, 3815–3824.
10 F. Ye, M. Haddad, V. Michelet and V. Ratovelomanana-
Vidal, Solvent-free ruthenium trichloride-mediated [2+2+2]
cycloaddition of α{,}ω-diynes and cyanamides: a convenient
A. V. Patterson, J. B. Smaill, X. Ren, X. Lu and K. Ding,
2-Aminopyrimidine Derivatives as New Selective Fibroblast
Growth Factor Receptor 4 (FGFR4) Inhibitors, ACS Med.
Chem. Lett., 2017, 8, 543–548.
21 M. S. Tichenor, R. L. Thurmond, J. D. Venable and
B. M. Savall, Functional Profiling of 2-Aminopyrimidine
Histamine H4 Receptor Modulators, J. Med. Chem., 2015,
58, 7119–7127.
22 S. Lee, D. Lim, E. Lee, N. Lee, H. Lee, J. Cechetto,
M. Liuzzi, L. H. Freitas-Junior, J. S. Song, M. A. Bae,
S. Oh, L. Ayong and S. B. Park, Discovery of Carbohybrid-
Based 2-Aminopyrimidine Analogues As a New Class of
Rapid-Acting Antimalarial Agents Using Image-Based
Cytological Profiling Assay, J. Med. Chem., 2014, 57, 7425–
7434.
access to 2-aminopyridines, Org. Chem. Front., 2017, 4, 23 Y. T. Han, G.-I. Choi, D. Son, N.-J. Kim, H. Yun, S. Lee,
1063–1068.
D. J. Chang, H.-S. Hong, H. Kim, H.-J. Ha, Y.-H. Kim,
H.-J. Park, J. Lee and Y.-G. Suh, Ligand-Based Design,
11 H. Chowdhury and A. Goswami, A Quick Access to 1-(2-
Pyridyl)indoles via Solvent-Free Ruthenium(II)-Catalyzed
Chemo- and Regioselective [2+2+2] Cycloaddition of
α,ω-Diynes and N-Cyanoindoles, Adv. Synth. Catal., 2017,
359, 314–322.
Synthesis,
and
Biological
Evaluation
of
2-Aminopyrimidines,
a
Novel Series of Receptor for
Advanced Glycation End Products (RAGE) Inhibitors,
J. Med. Chem., 2012, 55, 9120–9135.
12 F. Ye, C. Tran, L. Jullien, T. Le Saux, M. Haddad, 24 M. W. Martin, J. Newcomb, J. J. Nunes, D. C. McGowan,
V. Michelet and V. Ratovelomanana-Vidal, Synthesis of
Fluorescent Azafluorenones and Derivatives via
Ruthenium-Catalyzed [2+2+2] Cycloaddition, Org. Lett.,
2018, 20, 4950–4953.
D. M. Armistead, C. Boucher, J. L. Buchanan, W. Buckner,
L. Chai, D. Elbaum, L. F. Epstein, T. Faust, S. Flynn,
P. Gallant, A. Gore, Y. Gu, F. Hsieh, X. Huang, J. H. Lee,
D. Metz, S. Middleton, D. Mohn, K. Morgenstern,
M. J. Morrison, P. M. Novak, A. Oliveira-dos-Santos,
D. Powers, P. Rose, S. Schneider, S. Sell, Y. Tudor,
S. M. Turci, A. A. Welcher, R. D. White, D. Zack, H. Zhao,
L. Zhu, X. Zhu, C. Ghiron, P. Amouzegh, M. Ermann,
J. Jenkins, D. Johnston, S. Napier and E. Power, Novel
2-Aminopyrimidine Carbamates as Potent and Orally Active
Inhibitors of Lck: Synthesis, SAR, and in Vivo
Antiinflammatory Activity, J. Med. Chem., 2006, 49, 4981–
4991.
a
13 K. M. Medas, R. W. Lesch, F. B. Edioma, S. P. Wrenn,
V. Ndahayo and S. P. Mulcahy, Metal-Catalyzed
Cyclotrimerization Reactions of Cyanamides: Synthesis of
2-Aryl-α-carbolines, Org. Lett., 2020, 22, 3135–3139.
14 A. Díaz-Ortiz, A. de la Hoz, A. Moreno, A. Sánchez-Migallón
and G. Valiente, Synthesis of 1{,}3{,}5-triazines in solvent-
free conditions catalysed by silica-supported lewis acids,
Green Chem., 2002, 4, 339–343.
15 P. Dornan, C. N. Rowley, J. Priem, S. T. Barry, T. J. Burchell,
T. K. Woo and D. S. Richeson, Atom efficient cyclotrimeri- 25 T. K. Lane, M. H. Nguyen, B. R. D’Souza, N. A. Spahn and
zation of dimethylcyanamide catalyzed by aluminium
amide: a combined experimental and theoretical investi-
gation, Chem. Commun., 2008, 3645–3647.
J. Louie, The iron-catalyzed construction of 2-aminopyrimi-
dines from alkynenitriles and cyanamides, Chem.
Commun., 2013, 49, 7735–7737.
16 X. Chen, S.-D. Bai, L. Wang and D.-S. Liu, Reactions of 26 L.-G. Xie, S. Niyomchon, A. J. Mota, L. González and
Bis(silyl-substituted) Methyllithium with α-Hydrogen-free
Nitriles into 1,3,5-Triazines, Heterocycles, 2005, 65, 1425–1430.
17 A. Herrera, A. Riaño, R. Moreno, B. Caso, Z. D. Pardo,
N. Maulide, Metal-free intermolecular formal cycloaddi-
tions enable an orthogonal access to nitrogen heterocycles,
Nat. Commun., 2016, 7, 10914.
I. Fernández, E. Sáez, D. Molero, A. Sánchez-Vázquez and 27 A. Y. Dubovtsev, D. V. Dar’in and V. Y. Kukushkin, Three-
R. Martínez-Alvarez, One-Pot Synthesis of 1,3,5-Triazine
Derivatives via Controlled Cross-Cyclotrimerization of
Nitriles: A Mechanism Approach, J. Org. Chem., 2014, 79,
7012–7024.
Component [2+2+1] Gold(I)-Catalyzed Oxidative Generation
of Fully Substituted 1,3-Oxazoles Involving Internal
Alkynes, Adv. Synth. Catal., 2019, 361, 2926–2935.
28 V. A. Rassadin, V. P. Boyarskiy and V. Y. Kukushkin, Facile
Gold-Catalyzed Heterocyclization of Terminal Alkynes and
Cyanamides Leading to Substituted 2-Amino-1,3-Oxazoles,
Org. Lett., 2015, 17, 3502–3505.
18 M. Cariou and J. Simonet, Comparison of chemical and
electrochemical reduction of cyanamides: an example of
cathodic decyanation, Can. J. Chem., 1991, 69, 861–864.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem.