A. MONEO ET AL.
(dd, 2H, J = 8.7 and J= 1.2Hz); 13C NMR d 134.0, 133.5, 129.8, 128.2, 118.2,
112.7; UV–VIS (DMF) 322 nm (log e = 3.43), 306.5 nm (log e = 3.27),
272.5nm (log e = 3.92), 261.5nm (log e = 4.00); EPR (radical anion, MeCN)
a2N = 1.18 G, a2H = 3.37G, a2H = 3.35 G, a2H = 0.87G.
Cyclic voltammetry (CV) and controlled potential electrolysis (CPE)
were performed in Bu4NBF4/DMF (0.1 M) using a Pt wire (CV) or a
Pt-gauze (CPE) as working electrodes. Potentials were measured versus
Fc/Fc+ (internal reference) at 200 mV/s. A potentiostat/galvanostat Radi-
ometer Analytical Voltammetry PST050 VoltaLabW (72 rue d’Alsace
69627 Villeurbanne Cedex Lyon France) equipment was used for VC
and CPE studies.
Anthracene-1,8-dicarbonitril (18ADN)
[32]
Theoretical calculations were performed using Gaussian 03. [37]
1,8-diiodoanthracene
(1g, 2.3mmol) was reacted with CuCN (0.5g,
5.58mmol) as described above to yield 0,45 g (60%) of yellow crystals; mp
[33]
300ꢀC (Lit
300,5ꢀC); 1H NMR (300 MHz; CDCl3), d 9.16 (s, 1H), d 8.64
Acknowledgements
(s, 1H), d 8.30 (dd, 2H, J= 8.7 and J = 1.2Hz), d 8.07 (dd, 2H, J= 6.9 and
J = 1.2Hz), d 7.62 (dd, 2H, J= 8.7 and J = 6.9Hz); UV–VIS (DMF) 406 nm (log
e = 3.72), 385 nm (log e = 3.84), 364 nm (log e = 3.78); EPR (radical anion,
DMF) a2N = 0.28G, aH = 5.33 G, a2H = 4.08 G, a2H = 3.34 G, aH = 3.23G,
a2H = 0.28 G.
We thank Dr. Alexandra Antunes for the use of the 500MHz NMR
facility, Professor Dennis Evans (Purdue University, IN, USA) for
providing a sample of 2,6-dibromonaphthalene, and Professor
José Paulo Farinha for the use of a Shimadzu UV/Vis/NIR
spectrometer. Support by Fundação Para a Ciência e Tecnologia
through its Centro de Química Estrutural and Projects PEst-
OE/QUI/UI0100/2011 and PTDC/QUI-QUI/101433/2008 is gratefully
acknowledged.
Biphenyl-4,4′-dicarbonitrile (Ph2DN)
UV–VIS (DMF) 280 nm (log e = 4.49); EPR (radical anion, DMF) a2N = 0.28 G,
a4H = 1.79 G, a4H = 1.03 G.
Terphenyl-4,4′′-dicarbonitrile (Ph3DN)
REFERENCES
[34]
This compound was prepared using published procedures.
mp >
303–306 ꢀC (Lit[35] 299–300 ꢀC); 1H NMR (300 MHz; CDCl3) 7.75 (AB, 8H),
7.72 (s, 4H); 13C NMR d 144.80, 139.57, 136.81, 132.89, 131.55, 128.10,
127.82, 118.93, 111.55; UV–VIS (DMF) 339.5 nm (log e = 3.76). The complex
EPR spectrum was not interpreted.
[1] R. A. Marcus, J. Chem. Phys. 1956, 24, 966–978.
[2] R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265–322.
[3] N. S. Hush, Prog. Inorg. Chem. 1967, 8, 391–444.
[4] N. S. Hush, Coord. Chem. Rev. 1985, 64, 135–157.
[5] M. B. Robin, P. Day, Adv. Inorg. Radiochem. 1967, 10, 247–422.
[6] S. F. Nelsen, A. E. Konradsson, M. N. Weaver, J. P. Telo, J. Am. Chem.
Soc. 2003, 125, 12493–12501.
Quaterphenyl-4,4′′′-dicarbonitrile (Ph4DN)
[7] S. F. Nelsen, M. N. Weaver, J. I. Zink, J. P. Telo, J. Am. Chem. Soc. 2005,
To a stirred solution of 4,4′-dibromobiphenyl (0.42g, 3,2mmol) and tetrakis
(triphenylphosphine)palladium(0) (0.1g) in 10ml of toluene was added
under nitrogen atmosphere 5ml of a 2 M aqueous solution of Na2CO3,
followed by 4-cyanophenylboronic acid (0.5g, 6.8mmol) in 5ml of
methanol. The mixture was vigorously stirred at 80ꢀC for 24 h, filtered
and the powder extracted with chloroform to yield 0.38 g of crude Ph4DN
(78%). The crude solid was purified by elution with toluene from a column
packed with silica to yield 0.24 g (50%) of a white solid. mp 285–287 ꢀC; 1H
NMR (500MHz; Acetone-d6) 7.99 (d, 4H, J= 8.4), 7.93 (d, 4H, J= 8.4Hz), 7.92
(s, 8H); 13C NMR d 144.98, 140.50, 138.44, 132.71, 127.77, 127.75, 127.60,
118.91, 111.08; UV–VIS (DMF) 306 nm (log e = 4.23). The complex EPR
spectrum was not interpreted.
127, 10611–10622.
[8] R. M. Hoekstra, J. P. Telo, Q. Wu, R. M. Stephenson, S. F. Nelsen, J. I.
Zink, J. Am. Chem. Soc. 2010, 132, 8825–8827.
[9] J. P. Telo, S. F. Nelsen, Y. Zhao, J. Phys. Chem. A 2009, 113, 7730–7736.
[10] S. F. Nelsen, K. P. Schultz, J. P. Telo, J. Phys. Chem. A 2008, 112,
12622–12628.
[11] S. F. Nelsen, M. N. Weaver, J. P. Telo, J. Am. Chem. Soc. 2007, 129,
7036–7043.
[12] J. P. Telo, A. Moneo, M. F. N. N. Carvalho, S. F. Nelsen, J. Phys. Chem. A
2011, 115, 10738–10743.
[13] J. P. Telo, A. S. Jalilov, S. F. Nelsen, J. Phys. Chem. A 2011, 115,
3016–3021.
[14] S. F. Nelsen, M. N. Weaver, A. E. Konradsson, J. P. Telo, T. Clark, J. Am.
Chem. Soc. 2004, 126, 15431–15438.
[15] J. P. Telo, M. C. B. L. Shohoji, B. J. Herold, G. Grampp, J. Chem.
Soc., Faraday Trans. 1992, 88, 47–51.
2,2′-dimethylbiphenyl-4,4′-dicarbonitrile (M2Ph2DN)
[16] S. F. Nelsen, M. N. Weaver, Y. Luo, J. V. Lockard, J. I. Zink, Chem.
Phys. 2006, 324, 195–201.
[17] C. Lambert, G. Nöll, J. Am. Chem. Soc. 1999, 121, 8434–8442.
[18] S. V. Rosokha, D.-L. Sun, J. K. Kochi J. Phys. Chem. A 2002, 106,
2283–2292.
[19] S. Barlow, C. Risko, S.-J. Chung, N. M. Tucker, V. Coropceanu, S. C.
Jones, Z. Levi, J.-L. Brédas, S. R. Marder, J. Am. Chem. Soc. 2005,
127, 16900–16911.
2,2′-dimethyl-4,4′-dibromobiphenyl [35] (1 g, 0.29 mmol) was reacted with
CuCN (0.47 g, 5.3 mmol) and the product purified as described previously
[36]
to yield 0.35 g (65%) of a white solid. mp 112–113 ꢀC (lit
113 ꢀC); 1H
NMR (300 MHz; CDCl3) d 7.6 (d, 2H, J = 0.6 Hz), 7.56 (dd, 2H, J = 7.8 Hz,
J = 0.6), 7.17 (d, 2H, J = 8.7), 2.08 (s, 6H); 13 C NMR d 144.63, 137.15,
133.86, 129.84, 129.68, 118.73, 112.27, 19.68. The complex EPR spectrum
was not interpreted.
[20] S. F. Nelsen, M. N. Weaver, J. P. Telo, J. Phys. Chem. A 2007, 111,
10993–10997.
2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarbonitrile (M4Ph2DN)
[21] G. L. Closs, J. R. Miller, Science 1988, 240, 440–447.
[22] S. F. Nelsen, H. Q. Tran, M. A. Nagy, J. Am. Chem. Soc. 1998, 120,
298–304.
[23] O. S. Wenger, Inorg. Chim. Acta 2009, 374, 3–9.
[24] M. Cordes, B. Giese, Chem. Soc. Rev. 2009, 38, 892–901.
[25] K. Meerholzt, J. Heinze, Electrochim. Acta 1996, 41, 1839–1854.
[26] N. A. Macías-Ruvalcaba, J. P. Telo, D. H. Evans, J. Electroanal. Chem.
2007, 600, 294–302.
4,4′-Dibromo-2,2′,6,6′-tetramethylbiphenyl[36] (0.71 g, 1.92 mmol) was
reacted with CuCN (0.41 g, 4.6mmol) and purified as described previously
1
to yield 0.12 g (24%) of a white solid. mp 252–253ꢀC; H NMR (300 MHz;
CDCl3) 7.46 (s, 4H), 2.09 (s, 12H); 13C NMR d 134.41, 136.77, 131.53, 118.95,
111.88, 19.66; UV–VIS (DMF) 283 nm (log e = 3.44), 274 nm (log e = 3.47).
EPR (radical anion, DMF) a2N = 0.34 G, a4H = 1.52G, a12H = 0.69 G.
Radical anions were prepared in vacuum sealed glass cells equipped
with an EPR tube and a quartz optical cell. The concentration of the samples
was determined spectrophotometrically before reduction using the UV
data earlier. Reduction was achieved by contact with 0.2% Na–Hg amalgam.
A large excess of Cryptand [2.2.2] was used to sequester the sodium
counter-ion.
[27] D. Vonlanthen, A. Rudnev, A. Mishchenko, A. Käslin, J. Rotzler,
M. Neuburger, T. Wandlowski, M. Mayor, Chem. Eur. J. 2011, 17,
7236–7250.
[28] S. F. Nelsen, S. C. Blackstock, Y. Kim, J. Am. Chem. Soc. 1987, 109,
677–682.
[29] S. J. Formosinho, J. Chem. Soc. Perkin Trans 2 1988, 1209–1212.
[30] G. Ege, E. Beisiege, Synthesis 1974, 22–23.
wileyonlinelibrary.com/journal/poc
Copyright © 2012 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. (2012)