Organometallics
Article
was observed. The pressure tube was heated for 14 h with magnetic
stirring. The pressure tube was ambiently cooled and then
centrifuged, compacting the Ti(NMe2)2/SiO2 into an intensely
colored orange to brown pellet at the bottom of the tube. This left a
for characterization details of the organic products.
a bis(phosphinoselenoic amide) supported titanium(iv) complex.
Dalton Transactions 2016, 45, 17824−17832.
200
(8) Odom, A. L. New C-N and C-C bond forming reactions
catalyzed by titanium complexes. Dalton Transactions 2005, 225−233.
(9) Severin, R.; Doye, S. The catalytic hydroamination of alkynes.
Chem. Soc. Rev. 2007, 36, 1407−1420.
General Iminoamination Procedure. A pressure tube (15 mL)
was charged with 5 mol % of Ti(NMe2)2/SiO2200 (100 mg, 0.05 mmol
of Ti) and a Teflon stir bar. A solution of NH2R (1 mmol), alkyne
(1−2 mmol), and CyNC (1.5 mmol) was prepared in a 1.5 mL
volumetric flask, diluted to this volume with p-cymene. This solution
was then placed in the pressure tube, which was sealed and transferred
from the glovebox to a preheated (180 °C) aluminum well plate. The
pressure tube was heated for 48 h with magnetic stirring. The pressure
tube was cooled to ambient temperature and was centrifuged,
(10) Cao, C.; Shi, Y.; Odom, A. L. A Titanium-Catalyzed Three-
Component Coupling To Generate α,β-Unsaturated β-Iminoamines.
J. Am. Chem. Soc. 2003, 125, 2880−2881.
(11) Majumder, S.; Odom, A. L. Titanium catalyzed one-pot
multicomponent coupling reactions for direct access to substituted
pyrimidines. Tetrahedron 2010, 66, 3152−3158.
(12) Odom, A. L.; McDaniel, T. J. Titanium-Catalyzed Multi-
component Couplings: Efficient One-Pot Syntheses of Nitrogen
Heterocycles. Acc. Chem. Res. 2015, 48, 2822−2833.
200
compacting the Ti(NMe2)2/SiO2 into a dark brown pellet at the
(13) Majumder, S.; Gipson, K. R.; Staples, R. J.; Odom, A. L.
Pyrazole Synthesis Using a Titanium-Catalyzed Multicomponent
Coupling Reaction and Synthesis of Withasomnine. Adv. Synth. Catal.
2009, 351, 2013−2023.
bottom of the tube. This left a dark orange to opaque brown solution.
organic products.
(14) Vujkovic, N.; Fillol, J. L.; Ward, B. D.; Wadepohl, H.;
Mountford, P.; Gade, L. H. Insertions into Azatitanacyclobutenes:
New Insights into Three-Component Coupling Reactions Involving
Imidotitanium Intermediates. Organometallics 2008, 27, 2518−2528.
(15) Straub, B. F.; Bergman, R. G. The Mechanism of Hydro-
amination of Allenes, Alkynes, and Alkenes Catalyzed by Cyclo-
pentadienyltitanium−Imido Complexes: A Density Functional Study.
Angew. Chem., Int. Ed. 2001, 40, 4632−4635.
(16) Yim, J. C. H.; Bexrud, J. A.; Ayinla, R. O.; Leitch, D. C.;
Schafer, L. L. Bis(amidate)bis(amido) Titanium Complex: A
Regioselective Intermolecular Alkyne Hydroamination Catalyst. J.
Org. Chem. 2014, 79, 2015−2028.
(17) Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L.
Titanium dipyrrolylmethane derivatives: rapid intermolecular alkyne
hydroamination. Chem. Commun. 2003, 586−587.
(18) Ackermann, L. TiCl4-Catalyzed Intermolecular Hydroamina-
tion Reactions. Organometallics 2003, 22, 4367−4368.
(19) Ackermann, L.; Born, R. TiCl4/t-BuNH2 as the sole catalyst
for a hydroamination-based Fischer indole synthesis. Tetrahedron Lett.
2004, 45, 9541−9544.
(20) Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L.
Intramolecular Hydroamination of Unactived Olefins with Ti-
(NMe2)4 as a Precatalyst. Org. Lett. 2005, 7, 1959−1962.
(21) Li, C.; Thomson, R. K.; Gillon, B.; Patrick, B. O.; Schafer, L. L.
Amidate complexes of titanium and zirconium: a new class of tunable
precatalysts for the hydroamination of alkynes. Chem. Commun. 2003,
2462−2463.
(22) Gilbert, Z. W.; Hue, R. J.; Tonks, I. A. Catalytic formal [2 +
2+1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIV
redox catalysis. Nat. Chem. 2016, 8, 63.
(23) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.;
Shishkin, O. V. Synthesis and imido-group exchange reactions of tert-
butylimidotitanium complexes. J. Chem. Soc., Dalton Trans. 1997,
1549−1558.
(24) Mountford, P. New titanium imido chemistry. Chem. Commun.
1997, 2127−2134.
(25) Billow, B. S.; McDaniel, T. J.; Odom, A. L. Quantifying ligand
effects in high-oxidation-state metal catalysis. Nat. Chem. 2017, 9, 837.
(26) Swartz, D. L.; Odom, A. L. Synthesis, Structure, and
Hydroamination Kinetics of (2,2′-Diaryldipyrrolylmethane)- and
Bis(2-arylpyrrolyl)titanium Complexes. Organometallics 2006, 25,
6125−6133.
(27) Britton, J.; Jamison, T. F. The Assembly and Use of Continuous
Flow Systems for Chemical Synthesis. Nat. Protoc. 2017, 12, 2423−
2446.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Additional experimental and synthetic details and
spectral data for isolated products (PDF)
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
■
The authors thank Aaron Sadow for helpful discussions and
the National Science Foundation for generous support (CHE-
1562140).
REFERENCES
■
(1) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Generation, alkyne
cycloaddition, arene carbon-hydrogen activation, nitrogen-hydrogen
activation and dative ligand trapping reactions of the first monomeric
imidozirconocene (Cp2Zr:NR) complexes. J. Am. Chem. Soc. 1988,
110, 8729−8731.
(2) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. Stoichiometric and
catalytic hydroamination of alkynes and allene by zirconium bisamides
Cp2Zr(NHR)2. J. Am. Chem. Soc. 1992, 114, 1708−1719.
(3) Johnson, J. S.; Bergman, R. G. Imidotitanium Complexes as
Hydroamination Catalysts: Substantially Enhanced Reactivity from an
Unexpected Cyclopentadienide/Amide Ligand Exchange. J. Am.
Chem. Soc. 2001, 123, 2923−2924.
(4) Pohlki, F.; Doye, S. The Mechanism of the [Cp2TiMe2]-
Catalyzed Intermolecular Hydroamination of Alkynes. Angew. Chem.,
Int. Ed. 2001, 40, 2305−2308.
(5) Khedkar, V.; Tillack, A.; Beller, M. A Dramatic Effect of Aryloxo
Ligands on the Titanium-Catalyzed Hydroamination of Alkynes. Org.
Lett. 2003, 5, 4767−4770.
(6) Thomson, R. K.; Bexrud, J. A.; Schafer, L. L. A Pentagonal
Pyramidal Zirconium Imido Complex for Catalytic Hydroamination
of Unactivated Alkenes. Organometallics 2006, 25, 4069−4071.
(7) Bhattacharjee, J.; Das, S.; Kottalanka, R. K.; Panda, T. K.
Hydroamination of carbodiimides, isocyanates, and isothiocyanates by
(28) Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.;
Battilocchio, C.; Ley, S. V.; Stevens, C. V. Taming Hazardous
Chemistry by Continuous Flow Technology. Chem. Soc. Rev. 2016,
45, 4892−4928.
H
Organometallics XXXX, XXX, XXX−XXX